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In a stably stratified shear layer, thin vorticity layers (‘baroclinic layers’) are produced 
by buoyancy effects and strain in between the Kelvin-Helmholtz vortices. A two- 
dimensional numerical study is conducted, in order to investigate the stability of these 
layers. Besides the secondary Kelvin-Helmholtz instability, expected but never 
observed previously in two-dimensional numerical simulations, a new instability is also 
found. 

The influence of the Reynolds number (Re) upon the dynamics of the baroclinic 
layers is first studied. The layers reach an equilibrium state, whose features have been 
described theoretically by Corcos & Sherman (1976). An excellent agreement between 
those predictions and the results of the numerical simulations is obtained. The 
baroclinic layers are found to remain stable almost up to the time the equilibrium state 
is reached, though the local Richardson number can reach values as low as 0.05 at the 
stagnation point. On the basis of the work of Dritschel et al. (1991), we show that the 
stability of the layer at this location is controlled by the outer strain field induced by 
the large-scale Kelvin-Helmholtz vortices. Numerical values of the strain rate as small 
as 3 % of the maximum vorticity of the layer are shown to stabilize the stagnation point 
region. 

When non-pairing flows are considered, we find that only for Re 2 2000 does a 
secondary instability eventually amplify in the layer. (Re is based upon half the initial 
vorticity thickness and half the velocity difference at the horizontally oriented 
boundaries.) This secondary instability is not of the Kelvin-Helmholtz type. It 
develops in the neighbourhood of convectively unstable regions of the primary 
Kelvin-Helmholtz vortex, apparently once a strong jet has formed there, and moves 
along the baroclinic layer while amplifying. It next perturbs the layer around the 
stagnation point and a secondary instability, now of the Kelvin-Helmholtz type, is 
found to develop there. 

We next examine the influence of a pairing upon the flow behaviour. We show that 
this event promotes the occurrence of a secondary Kelvin-Helmholtz instability, which 
occurs for Re 2 400. Moreover, at high Reynolds number ( 2  2000), secondary 
Kelvin-Helmholtz instabilities develop successively in the baroclinic layer, at smaller 
and smaller scales, thereby transferring energy towards dissipative scales through a 
mechanism eventually leading to turbulence. Because the vorticity of such a two- 
dimensional stratified flow is no longer conserved following a fluid particle, an analogy 
with three-dimensional turbulence can be drawn. 
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1. Introduction 
Stably stratified turbulent fluids exist in most natural systems, ranging from lakes to 

stars and are present in a number of industrial devices. The action of the buoyancy 
force compels the flow to organize into quasi-horizontal layers, as revealed for instance 
by in situ measurements in the ocean; the patchlike nature of stratified turbulence has 
motivated models for the oceanic mixing at small scales, based upon the vertical 
superposition of well-mixed layers separated by thin sheets of strong density and 
velocity gradients (see Gregg 1987 for a review). As well, in the atmosphere, it is in 
these sheets that clear air turbulence frequently occurs (e.g. Dutton & Panofski 1970). 
The organization of turbulent stably stratified flows into quasi-horizontal layers can 
also be observed in the wake experiments by Lin & Pao (1979), in the experiments with 
an oscillating grid by Browand, Guyomar & Yoon (1987) or in the numerical 
simulations of strongly stratified forced homogeneous turbulence by Herring & MCtais 
(1989). Such horizontal layering may also be inferred from the ratio of vertical to 
horizontal lengthscales in the wind-tunnel experiment by Lienhardt & Van Atta (1 990) 
or in the numerical calculations by Gerz & Schumann (1991), where a homogeneous 
mean shear is present. (See Hopfinger 1987 and Thorpe 1987 for reviews of stably 
stratified turbulence.) The spontaneous existence in stably stratified turbulence of 
quasi-horizontal layering and local velocity shear has motivated the present numerical 
study of a model flow consisting of the stably stratified shear layer. In this paper, we 
focus on the generation of two-dimensional secondary instabilities. Our computations 
will bring to the fore a mechanism for the onset of turbulence in a strongly stratified 
shear flow, consisting of the development, at high Reynolds numbers, of successive 
secondary instabilities in vorticity layers that form in the flow. 

As quoted in Drazin & Reid (1981, p. 332), the inviscid theory gives a useful 
criterion for the overall stability of such a flow at large Reynolds number. The 
temporal stability of an inviscid stably stratified shear layer within the Boussinesq 
approximation is reviewed in that monograph. The growing instability, of the Kelvin- 
Helmholtz type, is symmetric at the interface and non-dispersive. A necessary 
condition for instability to grow from an infinitely small disturbance is that the 
Richardson number is smaller than 0.25 somewhere in the flow (Miles 1961 ; Howard 
1961). The Richardson number is proportional to the ratio of the mean density 
gradient over the mean vorticity squared (and is often referred to as the gradient 
Richardson number). Its minimum value at t = 0 will be denoted J hereafter. This 
necessary condition has actually been shown numerically to be sufficient by Hazel 
(1972) for basic density and velocity profiles of hyperbolic tangent type, by solving the 
linear stability equation for an inviscid flow. Predictions of the linear theory have been 
examined experimentally by Thorpe (1971) and by Scotti & Corcos (1972) and 
numerically by Patnaik, Sherman & Corcos (1976) (viscosity being taken into account 
in the latter case). In many experimental studies however, the thickness of the initial 
velocity profile exceeds the thickness of the initial density profile by at least a factor two 
(e.g. Browand & Winant 1973; Yoshida 1977; Koop & Browand 1979; Lawrence, 
Browand & Redekopp 1991). In this case, and when J 2 0.07, a dispersive instability, 
the Holmboe instability, dominates the earlier flow dynamics (the Kelvin-Helmholtz 
instability being prevalent for J < 0.07). We shall not consider this case in the present 
study. 

As the development of the Kelvin-Helmholtz instability proceeds, a streamwise 
density gradient occurs in between the Kelvin-Helmholtz vortices, at the location 
where the ‘braids’ form in an unstratified shear layer. This streamwise density gradient 
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(corresponding to the spanwise component of the baroclinic torque, in the Boussinesq 
approximation) feeds the braid with vorticity. It follows that vorticity can locally 
increase beyond its maximum initial value, even if the flow dynamics is two- 
dimensional. This property yields a fundamentally different behaviour of the two- 
dimensional stratified shear layer as opposed to its unstratified counterpart : thin tilted 
layers of strong vorticity are formed in between the (now weakened) Kelvin-Helmholtz 
vortices. Such baroclinic layers, as they will be referred to hereafter, can be clearly seen 
in the two-dimensional numerical simulations of Patnaik et al. (1976), Peltier, HallC & 
Clark (1978), Davis & Peltier (1979) or Klaassen & Peltier (1985a-c, 1989, 1991). The 
question of whether a secondary Kelvin-Helmholtz instability can appear in these 
baroclinic layers has been raised in these articles (as well as in Corcos & Sherman 
1976). In the review article by Thorpe (1987), this secondary instability is sketched as 
one of the mechanisms which could trigger turbulence in a stably stratified shear layer. 
For this reason, it is one of the mechanisms by which mixing is supposed to occur in 
the ocean (Woods 1969). 

Other instabilities can develop in a stably stratified shear layer (see Klaassen & 
Peltier 1991). Some of these correspond to the instabilities that develop in shear layers 
with uniform density, the stable stratification having an overall stabilizing effect on 
them, even suppressing if strong; others are inherent to stable stratification. In the first 
class can be mentioned the two-dimensional subharmonic instability, leading to the 
pairing of Kelvin-Helmholtz vortices and, in three dimensions, a vortex stretching 
mechanism in the braid region, and an instability in the vortex core. The former 
mechanism leads to longitudinal streamwise or ‘rib’ vortices. A theoretical model of 
these rib vortices has been proposed by Lin & Corcos (1984); numerous experimental 
studies of these vortex structures have also been conducted (e.g. Bernal & Roshko 
1986; Lasheras, Cho & Maxworthy 1986; Nygaard & Glezer 1991), as well as 
numerical investigations (Metcalfe et al. 1987; Rogers & Moser 1992; Comte, Lesieur 
& Lamballais 1992). Concerning the instability in the vortex core, a review of its 
theoretical discovery can be found in Bayly, Orszag & Herbert (1988) and numerical 
evidence is provided in Knio & Ghoniem (1992). The second class of instabilities, 
inherent to stable stratification, essentially contains a three-dimensional convective 
instability due to a local inversion of the vertical density gradient; this instability has 
been conjectured by Davis & Peltier (1979) and observed experimentally by Thorpe 
(1985, 1987), Lawrence et al. (1991) and, most clearly, by Schowalter, Van Atta & 
Lasheras (1994). Numerical evidence of the convective instability has also been 
provided by Caulfield & Peltier (1994). The two-dimensional secondary Kelvin- 
Helmholtz instability mentioned above belongs evidently to this second class, in the 
sense that the basic flow upon which it develops, the baroclinic layer, does not exist in 
an unstratified shear flow. 

To our knowledge, evidence for the occurrence of this secondary instability has only 
been reported in observations of geophysical flows (e.g. in the atmosphere, Gossard, 
Richter & Atlas 1970; in the ocean, Haury, Briscoe & Orr 1979), in very few laboratory 
experiments (Delisi 1973 and private communication 1994; Altman 1988 ; Atsavapranee 
1995) and in only one three-dimensional numerical simulation (Staquet 1991). 

Hints concerning the occurrence of this secondary instability had previously been 
obtained by several authors. Thorpe (1968) observed secondary small-scale waves and 
spiral rolls in the baroclinic layer. The same observation was reported by Woods (1969) 
in the oceanic thermocline. In the highest Reynolds number case (Re = 900) of the 
numerical simulations performed by Klaassen & Peltier (1985 a)  some irregularities are 
reported in the density field of the baroclinic layer; unfortunately, the associated 
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vorticity field is not shown. The Reynolds number is based upon half the initial 
vorticity thickness and half the initial velocity difference at the horizontally oriented 
boundaries. From a theoretical point of view, Corcos & Sherman (1976) derived an 
analytical model for the dynamics of a baroclinic layer. This model yields, in particular, 
an analytical expression for the Richardson number of the baroclinic layer, from which 
Corcos & Sherman conclude that only for a high enough value of the initial Reynolds 
number may the layer become unstable (in the sense of the Miles-Howard theorem). 
In Klaassen & Peltier (1989), the stability to two-dimensional perturbations of a basic 
flow consisting of non-pairing quasi-steady Kelvin-Helmholtz vortices with J = 0.07 is 
examined. An eigenmode corresponding to a wavevector of zero component both in 
the streamwise and spanwise directions has been isolated at the stagnation point of the 
baroclinic layer. Those authors suggested that this mode may correspond to the two- 
dimensional secondary instability in question here and related it to Thorpe’s (1968) and 
Woods’ (1969) observations of small-scale waves. 

In the present paper, the occurrence of a secondary instability in a baroclinic layer 
is clearly shown using two-dimensional direct numerical simulations of the Navier- 
Stokes equations in the Boussinesq approximation. We shall only consider strongly 
stratified shear layers, with J = 0.167. The search for secondary instabilities in the 
baroclinic layers will lead us to vary the initial Reynolds number of the flow and values 
up to 2600 will be considered. 

As noted above, two-dimensional numerical simulations of a stably stratified shear 
layer in a vertical plane have already been performed, starting with Patnaik et al. 
(1976). In this latter paper, the development of one Kelvin-Helmholtz vortex for 
various initial conditions and different values of the initial Reynolds number (up to 
200) and minimum Richardson number of the flow is examined. The influence of these 
parameters upon the braid history, the state of maximum amplitude of the 
Kelvin-Helmholtz wave and its subsequent evolution are studied in detail. Higher- 
resolution calculations (128 x 129) have been performed by Klaassen & Peltier. In 
Klaassen & Peltier (1985~) the influence of the Reynolds number (up to 900, with 
J = 0.07) upon the flow evolution is studied, while in Klaassen & Peltier (1985b) the 
effect of the Prandtl number upon that evolution is examined (with J = 0.07 and 
Re = 300). Numerical simulations of vortex pairings of two and three vortices in a 
moderately stratified fluid are presented in Klaassen & Peltier (1989). The influence of 
the initial condition upon vortex pairings is examined, as well as the late flow 
behaviour. These calculations have been also used to test the linear stability of a quasi- 
steady Kelvin-Helmholtz vortex against two-dimensional perturbations (Klaassen & 
Peltier 1989). In Klaassen & Peltier (1991), the linear stability of this basic state is tested 
against three-dimensional perturbations, for different values of parameter J (ranging 
between 0 and 0.16), thereby complementing an earlier study (Klaassen & Peltier 
1985 c). 

The present paper is organized as follows. The numerical model is presented in $2. 
In order to understand why a secondary Kelvin-Helmholtz instability was not found 
in previous two-dimensional numerical calculations, the structure and dynamics of the 
baroclinic layer in the neighbourhood of its stagnation point are studied in detail, as 
a function of the Reynolds number. For this purpose, the analytical model proposed 
by Corcos & Sherman (1976) is used and carefully tested against our numerical results 
($3). The stabilizing influence of the outer strain field acting upon the baroclinic layer 
in the neighbourhood of its stagnation point is next discussed, on the basis of the work 
by Dritschel et al. (1991). The late development of secondary instabilities is described 
in $4, together with the influence of the pairing process on the growth of these 
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instabilities. The analogy of the flow dynamics with three-dimensional turbulence is 
also investigated. In $ 5 ,  the results are summarized and conclusions are drawn. 

2. Mathematical model and numerical method 
2.1. Mathematical model 

Let (x, y ,  z) be a Cartesian coordinate system where x is in the streamwise (mean flow) 
direction, y in the spanwise direction and z points upwards. The unit vectors along 
these three directions are denoted i,, iu and i, respectively. We study a temporal shear 
layer, that is a flow which is statistically uniform in the horizontal plane and develops 
in time. This problem is more tractable numerically than the spatial shear layer (which 
would correspond to most experimental studies). A spatial shear layer is statistically 
steady in time but develops along the streamwise direction; appropriate inflow-outflow 
boundary conditions are thus required along that direction. A Galilean transformation 
can be used to relate the spatial problem to the temporal one: x = Ot, where 0 is the 
mean velocity in the spatial problem. This transformation is strictly valid when the 
velocity difference between the two streams is small compared to the mean velocity. 
Actually, as shown by previous numerical studies of a temporal shear layer (e.g. 
Metcalfe et al. 1987; Rogers & Moser 1992), the validity of the transformation extends 
beyond the limits imposed by this condition. 

We assume that the fluid motion is described by the two-dimensional Navier-Stokes 
equations in the Boussinesq approximation : 

y? is a stream function related to the velocity field by 

u = -a@/az, w = a+/ax. (2.2) 
In this two-dimensional situation, the vorticity field has only one non-zero component, 
along the spanwise direction : w = (V x u) - iy, which is related to the stream function by 
w = - AII.. As well, the baroclinic torque, which only involves density gradients in the 
Boussinesq approximation (being equal to -g/p, ,(Vp x i,)), is simply proportional to 
the streamwise gradient of the density in two dimensions. f is the Jacobian function 
(y = (a/ax)(a/az) - (a/az)(a/ax)); -gi, is the acceleration due to gravity; v denotes the 
kinematic viscosity and K is the diffusion coefficient for density changes. p is the total 
density field. 

We decompose p as 
p(x, z ,  t )  = Po + p(z, t )  + P’(X7 z ,  t),  (2.3) 

where p,, is a constant density reference, p(z , t )  is the mean density and p’ is the 
deviation from the mean. The initial condition is defined in terms of the density and 
velocity fields, the stream function being next computed from (2.2). As in Patnaik 
et al. (1976), the initial mean velocity and mean density profiles are the similarity 
solutions of the Boussinesq equations that would result from the action of molecular 
effects upon a discontinuity of horizontal velocity and density at z = 0: 

( 2 . 4 ~ )  

(2.4b) 
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where Si is half the initial vorticity thickness of the shear layer. Pr = V / K  is the Prandtl 
number; it has a value of 0.7 for all the calculations presented in this paper, which is 
the value for air at standard temperature and pressure. The ratio of the thickness of 
the density profile to that of the velocity profile is equal to Pr-’”, and is therefore close 
to 1. These two profiles are plotted in figure 1. 

No density perturbation is superposed initially upon the mean density profile. By 
contrast, two-dimensional perturbations are superimposed upon the mean velocity 
field at t = 0, in order to promote the development of the Kelvin-Helmholtz instability 
and pairing when two Kelvin-Helmholtz vortices develop in the numerical domain. 
These two-dimensional perturbations are respectively solutions of the Rayleigh 
equation for the fundamental wavenumber 01 and for its first subharmonic 01/2.01 is the 
most amplified wavenumber predicted by inviscid linear stability theory for a velocity 
profile of error-function type and is equal to 0.4391/Si. The amplitude of the 
perturbation velocity for the fundamental mode is equal to ezO = 0.1 1 U for all 
calculations. As for the subharmonic mode, calculations with two different initial 
amplitudes will be performed, equal to either eZO/2.5 or ezO/lO. According to the 
analysis of Klaassen & Peltier (1989, p. 387), the former amplitude for the subharmonic 
mode corresponds to a forced shear layer for pairing, the ratio between the kinetic 
energy of the fundamental and subharmonic modes exceeding a threshold value that 
these authors estimated to be about 10. The latter amplitude yields a ratio of 77 
between the kinetic energy of these two Fourier components and, according to the 
criteria established numerically by Klaassen & Peltier, would correspond to an 
unforced situation. It should be noticed that, in the present paper, pairing is observed 
to occur for both amplitudes, even for a value of the Reynolds number as low as 400. 
By contrast, Koop & Browand (1979) reported that, on an average, this event did not 
occur for the same value of J in their Re z 300 experimental study. The initial density 
and velocity profiles in the experiment were, however, different from the present case 
and, for our value of J, led to a process of interfacial breaking waves through Holmboe 
instability. 

For boundary conditions, we assume that the flow is periodic in the streamwise 
direction, and at the horizontally oriented boundaries take free slip conditions on the 
velocity. These boundary conditions are consistent with the temporal shear layer 
problem. However, the free-slip boundary conditions require that p-po = 0 at the 
horizontally oriented boundaries, which is incompatible with the choice of the initial 
density profile. Such a problem can be solved by writing the total density field as 

p(x, z ,  t )  = Po +p”(x, z ,  t> + Pl in (Z)  (2.5) 
and choosing pLin(z) so that p”(x, z ,  t )  = 0 at the z-boundaries at any time; this condition 
implies that plin(z)  has to be defined by 

Pl in (Z)  = -Apz/Lz,  (2.6) 

where L, is the distance between the horizontally oriented boundaries. Equations (2.1) 
have thus been rewritten in terms of density variable b, instead of p, before being solved 
numerically. Note that, by (2.3) and (2.5), p”(x, z, t )  is equal to p(z, t )  +p’(x, z, t )  -p l in(z ) ,  
from which it follows that p” and p are related by 

- 

p”(z, t )  = jXz, t)-Pl in(z). (2.7) 

This relation is used in particular to initialize p”.  To permit physical interpretation 
however, all results will be expressed in terms of the density variable p -po throughout 
the paper. 
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FIGURE 1. Initial mean velocity (a) and mean density (b) profiles. Half the thickness of each 
profile is plotted (24 is the vorticity thickness at t = 0). 

Run Comments (N,,N,) Resolution Re ApL t,, t,, 

1 J = O  (2,2) (512,513) 200 - X X 

2 (1,l)  (128,129) 140 1.62 x X 

3 (1 , l )  (256,257) 400 1.70 x X 

4 (1, l )  (512,513) 1000 1.77 * X 

5 (1,l)  (768,769) 1500 1.77 44.5 x 
6 (1,l)  (1024,1025) 2000 1.76 44 72 
7 (1,l)  (1536,1537) 2600 1.78 43.5 67 
8 Same as run 4 except that (1,l) (256,257) 1000 - - - 

E(a, t = 0) has been divided 

(2,l)  (512,257) 400 - X 91 
10 Pairing with (2,l)  (768,385) 1000 - 81 

(2, 1) (512,257) 400 - X 97 

* 
11 E($z , t=O)=E(a , t=0) /4 .8  (2,l) (1024,513) 1500 - 44 64 
12 (2,l)  (1536,769) 2000 - 43 62 

43 65 
(4,l)  (1024,257) 1000 - 114 

13 Pairing with 

15 White noise perturbation - 

gl by log 

14 I E($z, t = 0) = E(a, t = 0)/77 (2,l)  (1536,769) 2000 - 

x: No secondary instability. 
*: Only the perturbation at the origin of the instability is visible from t z 44, before decaying. 
-: Not available or not computed. 

TABLE 1. Description of the calculations. N ,  and N, are the size of the computational domain along 
the streamwise and vertical directions respectively, non-dimensionalized by the fundamental 
wavelength. N, thus corresponds to the number of primary Kelvin-Helmholtz vortices that are able 
to develop in the flow. Re: initial Reynolds numbers (defined in $2.1); ApL:  (positive) density 
difference across the baroclinic layer at t = 52 (defined in $3.3.2); t,, and t,,: (approximate) time 
at which the near-core and Kelvin-Helmholtz secondary instabilities onset (onset is defined from 
constant-vorticity maps, when the perturbation initiating the instability becomes visible) ; E(a, t = 0), 
E(ia, t = 0) : initial kinetic energy in the fundamental and subharmonic wavenumbers respectively; 
E(a, t = 0) = 1.14 x except for runs 8 and 15; J = 0.167 and Pr = 0.7 for all calculations, except 
for run 1 which is unstratified. 

Equations (2.1) have been solved numerically in dimensionless form. The length and 
velocity scales are Si and U respectively and time is made dimensionless using the 
advective time scale Si/U. The density is scaled by Pr”’Ap/2. With this scaling, the 
dimensionless parameters which come into play in the equations are : Re, the Reynolds 
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number, initially equal to USJv;  the minimum Richardson number, whose expression 
at t = 0 is 

and the Prandtl number. As already noted in the Introduction, J has the constant value 
of 0.167 throughout the paper while Re varies between 140 and 2600. The 
Brunt-Vaisala period is defined by 21t/Jl/~ and is thus equal to the largest period of the 
internal waves that propagate in the flow. It has a value of 15.46JUin the present case. 

2.2. Numerical method 
Equations (2. l), written in dimensionless form and in terms of density variable b, have 
been solved using a pseudo-spectral method (e.g. Canuto et al. 1988): the spatial 
derivatives are computed in Fourier space while the nonlinear terms are computed in 
physical space. Along the vertical direction where free slip boundary conditions are 
imposed, the use of Fourier transforms is made possible by symmetrizing the velocity 
components and the density field about the z-boundary (Orszag 1971, Appendix 11). 
On the doubled domain, u is expanded in a cosine series in z and w and b in a sine series 
in z, which enforces the boundary conditions. 

The computation of the nonlinear terms in physical space generates aliasing errors, 
which are eliminated by a standard truncation method (Canuto et al., p. 84). The time 
advancement scheme is a third-order Adams-Bashforth scheme. The viscous terms are 
computed explicitly, because the Reynolds number of our calculations is large enough 
for the stability condition to be imposed by the advective time scale and not by the 
diffusive time scale (Canuto et al., p. 204). The time step dt is such that Mdt  = 3.64 
where M is the number of grid points per wavelength 21t/a. 

2.3. Numerical accuracy of the calculations 
In the calculations presented in this paper, J and Pr are kept constant while Re is 
varied. For a given Reynolds number, we wish to determine which resolution ensures 
that the computation is reliable. For this purpose, we first check that the equation 
driving the evolution of the total enstrophy Z 

z = ((V x u)2) (2.9) 

is satisfied within at least 1 YO. ( ) denotes a spatial average over the numerical domain. 
The equation for Z is 

dt = J( w:) -A ((g)’ + (g)2) (2.10) 

Though this criterion involves second derivatives of the velocity field, it is a global one. 
Thus, even when it is satisfied, a local quantity of interest for the present study (defined 
by (3.10)), which also involves second derivatives of the velocity field, appears to 
temporarily exhibit spurious fluctuations. When this occurs, we increase the resolution 
by 50% in each direction. As a result, these fluctuations are smoothed out while all 
other quantities of interest for the present study are nearly unchanged (for instance, the 
maximum vorticity of the flow over the numerical domain varies by at most 0.5 % as 
time evolves, when this resolution is increased). The resolution of the calculations 
presented in this paper, indicated in table 1, has been determined according to this local 
criterion. 



Two-dimensional secondary instabilities in a stratijied shear layer 81 

3. Influence of the Reynolds number on the dynamics of a two- 
dimensional baroclinic layer 

3.1. Evolution of the unstratijied shear layer 
Numerous two-dimensional numerical studies of an unstratified shear layer have 
already been published and are reviewed in Corcos & Sherman (1984) and Ho & 
Huerre (1984). We briefly recall the mechanisms that drive the evolution of a shear 
layer with uniform density, for comparison with the stably stratified case. An 
unstratified calculation is thus presented, in which the size of the computational 
domain is chosen so that two Kelvin-Helmholtz vortices can develop and merge: the 
horizontal (streamwise) and vertical lengths are equal to 47c/a. The velocity amplitude 
of the subharmonic perturbation is analogous to that of the forced shear layer for 
pairing (see $2.1). The initial Reynolds number is set to 200. The other parameters of 
this calculation, referred to as run 1, are written in table 1. 

The mechanisms that lead to the formation of Kelvin-Helmholtz vortices are now 
well known and have been analysed by Batchelor (1967, p. 515) and Corcos & Sherman 
(1976). These are illustrated via constant contours of the vorticity at successive times 
(figure 2). The initial vorticity, whose streamwise distribution is slightly modulated by 
a small perturbation (figure 2 a), progressively accumulates in regions which are 
periodically spaced in that direction (figures 2 b, c). These regions will become the cores 
of the Kelvin-Helmholtz vortices. They induce upon the fluid located between them a 
strain field that advects vorticity to the cores. The regions of strong strain are usually 
called the braids. As noted by Corcos & Sherman (1976), the rate of strain is essentially 
proportional to the circulation around the core and the efficiency of the mechanism of 
vorticity accumulation thus increases with increasing core circulation. Note that during 
this process of instability growth, the growing quantity is not the vorticity of the cores 
but the circulation around those cores. Indeed, in the present case where the density is 
uniform, the vorticity is a Lagrangian invariant of the inviscid flow and, therefore, its 
maximum value can only decrease from t = 0 if the fluid is viscous (e.g. Kraichnan & 
Montgomery 1980). 

As shown by Kelly (1967) and Klaassen & Peltier (1989), the vortex cores are most 
unstable to perturbation of wavenumber equal to a/2. The growth of this subharmonic 
perturbation leads to the pairing of the two vortices (figure 2 d )  and the resulting vortex 
has roughly twice the size of the pairing vortices (figure 2e). That vortex then relaxes 
towards a stationary state, except for a slight diffusion and a weak oscillatory motion 
around the horizontal axis, referred to as the nutation phenomenon (Ho & Huerre 
1984 and references therein, Klaassen & Peltier 1985a). 

3.2. Formation of baroclinic layers in a strongly stratijied shear layer 
In this section, we first show how a baroclinic layer forms in a strongly stratified shear 
flow. For this purpose, a calculation where two Kelvin-Helmholtz vortices develop is 
presented. This allows us also to show that pairing occurs very slowly and that, 
therefore, the earlier evolution of the shear layer can be studied by considering the 
development of one Kelvin-Helmholtz vortex only. This observation will be taken into 
account in the next section, when comparing with the model of Corcos & Sherman. 

The evolution of a strongly stratified shear layer is illustrated in figure 3 via contours 
of constant vorticity and density. The subharmonic mode has the same initial 
amplitude as in the unstratified calculation described above. However, since the 
amplitude of vertical motions is severely reduced by the strong stratification, a domain 
size equal to only 27r/a along the vertical direction needs to be used. As well, though 
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FIGURE 2. For caption see facing page. 
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FIGURE 3. Run 10 (Re = 1000). (a-d) Contours of constant vorticity. (a) Q,,, = 1.02, d = 0.06; (b) 
Q,,, = 1.44, d = 0.09; ( c )  Q,,, = 2.7, d = 0.1; ( d )  a,,, = 3.6, d = 0.3. Q,,, is the maximum 
vorticity (reached at the stagnation point of the baroclinic layers) and d is the distance between 
contour levels. Dashed-line contours represent negative values. (e-h) Contours of constant density 
corresponding to (a-d). d = 0.1. 

the mesh size is nearly the same in both calculations, the stabilizing effect of the 
stratification upon the overall flow dynamics permits us to increase the initial Reynolds 
number. According to the criterion described in $2.3, a value of 1000 (instead of 200 
in the unstratified case) can thus be employed. This calculation is referred to as run 10 
in table 1. 

Figure 3 shows that the growth of the instability mainly results in the formation of 
two stretched layers of vorticity (figure 3 k d ) .  The same layers are also seen as regions 
of strong streamwise density gradients (figure 3f-h) ; these regions will thus be referred 

~ ~~ 

FIGURE 2. Contours of constant vorticity for a two-dimensional shear layer with uniform density (run 
1 in table 1). The distance between contour levels is equal to (a) 0.06; (b) 0.06; (c)  0.06; ( d )  0.05; ( e )  
0.04. 
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to as ‘companion density layers’ hereafter. The vorticity and companion density layers 
together form a baroclinic layer. In order to illustrate the essential role of the 
companion density layer in vorticity changes of the flow, through the baroclinic torque, 
we have represented in figure 4 the temporal evolution of the vorticity (figure 4a) and 
of the spanwise component of the baroclinic torque (figure 4b) at four different 
locations in the flow: at the stagnation point of the two baroclinic layers and at the 
centre of the Kelvin-Helmholtz vortices. 

Figure 4(b) shows that, from t 2 3 ,  the streamwise gradient of the density 
continuously reinforces the vorticity in the baroclinic layers. By contrast, it weakens 
the vorticity at the centre of the vortex cores, except for short periods of time. From 
a global point of view, Corcas & Sherman (1976) pointed out that the baroclinic 
destruction in the core may be viewed as automatic compensation for baroclinic 
generation in the braids, since the total vorticity per wavelength remains constant. The 
baroclinic effects thus modify the development of the flow in two ways: (i) they weaken 
the vorticity accumulation process in the core (i.e. the growth of the circulation of the 
vortex core is reduced) and therefore prevent the instability from rapidly amplifying; 
(ii) baroclinic effects continuously feed the baroclinic layers with vorticity and thus 
make up for the advective loss. Figure 4(a) actually shows that the vorticity in these 
layers continuously increases up to t z 50; thus, at least up to this time, the rate at 
which vorticity is baroclinically produced in the layers is higher than that at which it 
is removed by advection towards the cores. (These two main features of the dynamics 
of the baroclinic layers are formalized in the model of Corcos & Sherman 1976 and will 
be examined in more detail in $ 3 . 3 . )  More precisely, the baroclinic production of 
vorticity is higher in the left-hand layer than in the right-hand one: the reason is that 
the left-hand layer is somewhat thinner than the right-hand one, for the same density 
difference (see figure 3 h ) ;  the streamwise density gradient is thus higher there. The fact 
that the vorticity nevertheless increases at almost the same rate at the stagnation point 
of both layers suggests that the vorticity is removed at a greater rate in the left-hand 
layer than in the right-hand one. As justified in $4.5, this may be attributable to the fact 
that the Kelvin-Helmholtz vortices are closer to the left-hand stagnation point than to 
the right-hand one, very likely because the subharmonic instability has started to grow 
(see figure 5 below). 

Note that, during the same time, two Kelvin-Helmholtz vortices would have already 
formed in the flow if the shear layer were unstratified, with braids almost depleted of 
vorticity (figure 2c), and that pairing would already be occurring (figure 2 4 .  The lower 
value of the Reynolds number in this unstratified run does not invalidate our 
comparison because a higher Reynolds number would increase the growth rate of the 
fundamental and subharmonic perturbations and thus emphasize the difference in 
behaviour that is already observed. 

The temporary growth of the vorticity in the cores displayed in figure 4(a) partly 
results from convective activity : potential energy is converted into kinetic energy when 
the heavy fluid that has been lifted as the initial vorticity layer rolls up is entrained 
towards the bottom of the vortex. The fluid is accelerated during this event and the 
local vorticity increases. Also, as the heavy fluid is entrained downward, the sign of the 
streamwise density gradient becomes positive again (see figure 3 g), which contributes 
to the vorticity growth as well (figure 4b). The existence of convective motions can be 
seen easily by noting that the vorticity in the vortex core increases periodically, with a 
period z 20 (figure 4a). This is of the same order as the period of rotation of a fluid 
particle inside the vortex, of diameter z n/a, at a speed of order 1. This can be also 
clearly seen in figure 3 (g, h) : the heavy (and light) fluid particles have accomplished one 
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FIGURE 4. Run 10 (Re = 1000). (a) Evolution of the spanwise vorticity i2 at the stagnation point of 
the left-hand baroclinic layer (-), right-hand baroclinic layer (----), at the centre of the left- 
hand vortex (- - -) and right-hand vortex (- - - -). (b) Evolution of the spanwise component of the 
baroclinic torque J a p / a x  at these four locations. 
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full turn inside the vortex core during the (dimensionless) time, equal to about 20, 
separating these two figures. Convective activity is however too weak to make up for 
the overall opposing effect of the baroclinic torque in the instability growth. Such a 
result is in agreement with Klaassen & Peltier’s (1985a) numerical study which shows 
that transfers from potential to wave kinetic energy play a secondary role in the wave 
development. 

We have computed the height reached by the Kelvin-Helmholtz vortex once the 
fundamental perturbation has saturated (figure 3d) and compared it to a theoretical 
prediction of Corcos & Sherman (1976) and to the experimental measurement of 
Thorpe (1973). In Corcos & Sherman (1976), a second theoretical model is proposed, 
in addition to the one mentioned above for the dynamics of a baroclinic layer, 
which predicts the temporal evolution of the height of the Kelvin-Helmholtz vortex 
as a function of J.  The Kelvin-Helmholtz vortex is modelled as a Stuart vortex 
(Stuart 1967) because of the close correspondence between the properties of the two 
velocity fields near the stagnation point. For the present simulations, the height of the 
Kelvin-Helmholtz vortex is defined by the distance along the vertical line joining the 
centre of this vortex to the centre of the baroclinic layer that surrounds it. According 
to the model of Corcos & Sherman, this height relative to the most amplified 
wavelength, H say, should reach an asymptotic value as time evolves equal to z 0.145. 
It can be shown from figure 3 (d) (and most clearly, from figure 7 d below) that this 
expression accurately predicts the height found numerically, apart from a slight 
underestimation (by about 3 %). This underestimation was also predicted by Corcos & 
Sherman and attributed to the use of the Stuart vortex as model flow. In Thorpe (1973), 
laboratory experiments of a temporally growing stably stratified shear layer are 
presented. Figure 3 of Thorpe’s paper displays twice the thickness H as a function of 
J (denoted R, in that paper). We found a good agreement with Thorpe’s measurement, 
for R, M 0.14: indeed, it is clear from flow visualizations of the experiments (see figure 
2 of Thorpe’s paper) that our J = 0.167 calculations correspond to R, M 0.14 
experiments (the Reynolds numbers being of the same order). 

Finally, note that, in the remainder of the present paper, the denomination ‘model 
of Corcos and Sherman’ will refer to the model for the baroclinic layer proposed by 
these authors in their 1976 article. 

3.2.1. Influence of the subharmonic mode upon thejow development 
Figures 3 and 4 show that two similar Kelvin-Helmholtz vortices and baroclinic 

layers develop in the flow up to r z 55, though a subharmonic perturbation with strong 
amplitude has been added at t = 0. The weak influence of this perturbation upon the 
behaviour of the flow up to this time can be estimated quantitatively from figure 5.  The 
kinetic energy in the fundamental and subharmonic modes is plotted versus time in this 
figure, and compared with the kinetic energy in the fundamental mode when only one 
Kelvin-Helmholtz vortex develops in the flow (run 4 in table 1). Figure 5 shows that 
the subharmonic mode starts growing (after a transient initial growth) when the 
fundamental mode has saturated, an effect already noted in previous numerical 
simulations of shear layers, both unstratified (e.g. Corcos & Sherman 1984) and 
stratified (e.g. Klaassen & Peltier 1989). This final growth is however very slow in the 
present case of a strong stratification and only at t z 54 does the kinetic energy of the 
subharmonic mode become as high as that of the fundamental mode. As shown by 
figure 3 (d), this is mainly manifested as a slight displacement of the right-hand vortex 
to the right toward the left-hand vortex (boundary conditions being periodic along the 
streamwise direction). As a result, the kinetic energy in the fundamental mode of the 
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FIGURE 5. Influence of a subharmonic perturbation on the growth of the fundamental mode 
(Re = 1000): - ---, kinetic energy in the fundamental mode E(a) when pairing is prohibited (run 4); 
-, kinetic energy in the fundamental mode when a subharmonic perturbation exists (run lo); 
__- , kinetic energy in the subharmonic mode E(0(/2) for run 10. 

one and two Kelvin-Helmholtz vortex flows exhibits similar behaviour up to t z 54. 
This suggests that the flow dynamics up to this time may be studied by considering the 
development of one Kelvin-Helmholtz vortex only. 

3.2.2. Influence of the initial amplitude of the perturbation upon the development of 
the flow 

Figure 5 shows that the growth rate of the fundamental mode does not attain a 
regime with a constant value at the beginning of the calculation. One reason may be 
that the initial amplitude of the perturbation is too high to lead to a linear regime. If 
this were true, it would be necessary to verify that the subsequent fully nonlinear 
development of the flow does not depend upon this initial amplitude. This question has 
been addressed qualitatively by Klaassen & Peltier (1985a, 1989) for the case of a 
weakly stratified shear layer. 

In order to ensure that the earlier regime of the flow is linear, we have decreased the 
initial amplitude of the perturbation velocity c2D by a factor 100 (run 8 in table 1 ; to 
gain computation time, a shear layer with only one Kelvin-Helmholtz vortex 
developing is simulated). The kinetic energy in the fundamental mode E(a) 
corresponding to this calculation is plotted versus time in figure 6(a)  (full line). In order 
to examine the influence of nonlinear interactions upon this growth, the same 
calculation has been carried out again, without nonlinear terms. The kinetic energy in 
the fundamental mode corresponding to this calculation (short-dash line) clearly shows 
that nonlinear effects start to influence the flow dynamics when E(a) exceeds a value 
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FIGURE 6. Temporal evo!ution of the kinetic energy of the fundamental mode E(a), for Re = 1000. 
(a) Influence of viscosity and nonlinear interactions upon this evolution: -, the fully nonlinear 
viscous Boussinesq equations have been solved (run 8) ; - - - -, same calculation, without nonlinear 
effects; - - -, same calculation, without viscous effects (identical behaviour for linearized or fully 
nonlinear equations); - -- -, inviscid linear Navier-Stokes equations (J  = 0). (b) Influence of the 
initial amplitude of the perturbation velocity e Z D :  ~ , ePD = 0.11 (run 4); ----, eZD = 0.011; 
-~~ , eZD = 0.001 1 (run 8). 

of z 7 x Also plotted in figure 6(a )  is E(a) corresponding to a calculation solving 
the inviscid Boussinesq equations (long-dash line). A growth rate of 0.07 is found for 
the perturbation velocity, in agreement with Hazel’s (1972) computations. This latter 
curve also shows that viscosity starts influencing the perturbation growth very early, 
in less than one Brunt-Vaisala period. 

Note that all three curves in figure 6(a) start with a higher slope, equal to 0.19 (for 
the perturbation velocity again). This results from the choice of this perturbation: its 
vertical dependence at t = 0 is the eigenfunction of the Rayleigh equations (without 
stratification) for the most unstable mode and about a quarter of Brunt-Vaisala period 
is needed for the stable stratification to influence the fluid motion. 

As shown by figure 5 ,  the initial value of E(a) chosen for all calculations presented 
in this paper is about lop4, which corresponds to the end of the linear regime, according 
to figure 6(a) .  We have checked that the behaviour of the flow once nonlinear 
saturation is reached is qualitatively the same, whether the initial amplitude of the 
perturbation is equal to ezD, ezD/10 or ezD/lOO. More precisely, we have found that the 
maximum vorticity is decreased by only 10% and 18% for the two latter cases 
respectively compared to the first one (this behaviour being due to the fact that the 
minimum Richardson number increases with time, both velocity and density profiles 
broadening). However, the growth rate of the perturbation is so slow that the time at 
which the saturation of E(a) occurs is strongly dependent upon the initial amplitude 
of this perturbation. This is illustrated in figure 6(b) where E(a) is plotted up to the time 
when the nonlinear saturation occurs, for the three initial amplitudes mentioned above. 
Figure 6(b)  shows that 3000 iterations separate the two first maxima of E(a) while 3600 
additional iterations separate the two later ones. This justifies the choice made here for 
the amplitude of the perturbation, especially because the stage of the flow of interest, 
during which secondary instabilities grow, occurs well after this nonlinear saturation 
has been reached. 
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3.2.3. Influence of the Reynolds number upon the overall structure of the baroclinic 
layer 

The minimum value of the Richardson number of the baroclinic layer displayed in 
figure 3 is always reached at the stagnation point and its smallest value as time elapses, 
equal to 0.07, is well below the critical value for linear stability. Nevertheless, in 
accordance with previous numerical studies mentioned in the Introduction, no 
secondary Kelvin-Helmholtz instability develops at the stagnation point. We define 
the Richardson number of the baroclinic layer as in Corcos & Sherman (1976): 

52 being the vorticity of the layer. The value of Ri at the stagnation point will be 
denoted Ri,. 

The influence of the Reynolds number Re upon the structure of the baroclinic layer 
is illustrated in figure 7, for Re ranging between 140 and 2600: as Re increases, the 
thickness of the vorticity layer and of its companion density layer decrease. These two 
events contribute to increase the vorticity of the flow, the latter through the baroclinic 
torque. Though Ri, reaches an absolute minimum value as small as 0.046 at the 
stagnation point for Re = 2600 (figure 7 d ) ,  no instability develops there. (It should be 
noted that the Re = 140 flow is dominated by stabilizing effects, namely stratification 
and viscosity. However, as discussed in 54.6.2, it will be interesting to compare its 
dynamics with those of a three-dimensional calculation having the same values of J and 
Re, which appears to bear a secondary instability.) 

In order to address this intriguing stability of the baroclinic layer at its stagnation 
point, we shall first conduct a quantitative study of the influence of the Reynolds 
number upon the behaviour of the layer. For this purpose, the theoretical model 
proposed by Corcos & Sherman (1976) will be used. This model allows a careful study 
of the structure and dynamics of a baroclinic layer and was developed to reproduce the 
features of a weakly stratified shear layer obtained by the numerical simulations of 
Patnaik et al. (1976). It was thus tested in this case ( J  = 0.03, Re = 25). To our 
knowledge, no other validation of this model has been performed since then. 

We shall first recall the principles of the model, stressing its underlying physical 
mechanisms. We shall next compare its predictions to our numerical simulations of a 
strongly stratified shear layer. This model will then help us to understand why the layer 
remains stable at the stagnation point. 

3.3. Comparison with the model of Corcos & Sherman (1976) 

3.3.1. Physics of the model 
In the model of Corcos & Sherman, the dynamics of the baroclinic layer in the 

neighbourhood of the stagnation point are modelled by the Boussinesq equations 
written in a frame of reference attached to the layer. The coordinates along the 
direction of the layer and normal to it are denoted by CT and 7 respectively and originate 
from the stagnation point (figure 8). The layer is assumed to be subjected to a pure 
strain field of uniform and constant strain rate, y, induced by the vorticity of the large- 
scale Kelvin-Helmholtz vortices and by the end of the baroclinic layers. An important 
assumption of the model is that the local vorticity of the layer, 52, can be treated as a 
passive scalar, in the sense that the velocity field induced by the vorticity of the layer 
itself plays no role in the advection of this vorticity (and of its companion density field); 
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FIGURE 7. Influence of the initial Reynolds number Re upon the structure of the flow at the time the vorticity reaches an absolute maximum Q,,,. This 
maximum is located at the stagnation point of the vorticity layer. Ria defined by (3. l), is the Richardson number at this location. d is the distance between 
contour levels. (a-d) Contours of constant vorticity. (a) Re = 140, Ri, = 0.20, a,,, = 1.19, d = 0.07 (run 2); (b)  Re = 400, Ri, = 0.12, Q,,, = 2.3, d = 0.1 
(run 3); (c) Re = 1000, Ri, = 0.07, Q,,, = 3.6, d = 0.3 (run 4); (d) Re = 2600, Ri, = 0.046, Q,,, = 6, d = 0.5 (run 7). (e-h) Contours of constant density 
corresponding to (a-d). d = 0.1. 
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FIGURE 8. Local frame of reference (r, y ,  7) attached to the baroclinic layer (the y spanwise axis 
has not been represented for clarity). S is the stagnation point of the baroclinic layer. 

only the outer strain field is responsible for this advection. The vorticity and density 
fields are assumed to be independent of u. Similarity solutions for these two fields can 
then be tested, which solely depend upon q/6  and r /6 ,  respectively, 6 and SP being the 
half-thickness of the vorticity layer and companion density layer. For such solutions, 
the model predicts the existence, at large time, of a stationary regime which is 
characterized by two local equilibria: (i) along q, the transport by the strain field 
opposes diffusive effects; (ii) along u, the outward advection by the strain field 
(towards the Kelvin-Helmholtz vortices) balances the local production of vorticity by 
the baroclinic torque. The first equilibrium yields a constant thickness of the baroclinic 
layer, an estimate of which can be obtained by writing that the characteristic time scales 
of strain and diffusion are of the same order: 1 / y  - Re 6:, for the vorticity layer and 
l /y  - Pr Re$,, for the companion density layer. The expressions for the asymptotic 
half-thicknesses 6, and 6,, predicted by the model are 

The second local equilibrium leads to a constant velocity difference across the layer. 
This can be seen directly by considering the budget equation for the vorticity averaged 
over the layer width, 2' say, within a slice of length d a  of this layer: 

where uu is the component along a of the total velocity field. (An estimate of 2' will 
be given in $3.3.2 below.) Using q = -sin (0) x, 0 being the angle that the layer makes 
with the horizontal at the stagnation point, yields 

Qdq = (3 -4) 

ApL is the (positive) density difference across the vorticity layer when this layer is 
crossed from below to above over the distance 2'. The velocity component u, is made 
up of two contributions: the component of the pure strain field, ya,  plus the velocity 
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component induced by the layer itself. We shall assume that the net flux associated with 
this latter contribution vanishes; this is true if the vorticity distribution is symmetric 
with respect to the 7 = 0 axis. It will be necessary to check this assumption in the 
present case of a strongly stratified shear flow, because the intense vorticity of the layer, 
if slightly asymmetrically distributed, would induce an appreciable net flux compared 
to the pure strain contribution. Under this assumption, (3.4) can be solved easily and 
yields the temporal evolution of the velocity difference across the layer over the 
distance 2: 

Qdg(t) = Ae-Yt+Jsin(6)-. APL 
Y 

(3.5) 

A is a constant imposed by the initial conditions (the 'initial' time being the one at 
which the strain rate reaches a constant value). The derivation of (3.5) assumes also 
that the product sin(6)ApL is constant, or at least that the main contribution to the 
temporal variation of AV(t) in (3.5) stems from the exponential term. This assumption 
will have to be checked also. For a weakly stratified shear layer, the numerical 
computations of Patnaik et al. (1976) show that ApL is the total density difference at 
the horizontally oriented boundaries (i.e. ApL = Ap). By contrast, in the present case 
where the fluid is strongly stratified, Ap, has to be determined from the numerical 
simulations (see figure 7). As time goes to infinity, the velocity difference across the 
layer reaches the asymptotic value 

AV, = Jsin(6)ApL/y. (3.6) 
We need to recall the similarity solutions for the vorticity and density fields predicted 

by the model of Corcos & Sherman: 

(3.7) 

These expressions will provide the definitions of 8(t) and ApL which will be used to 
compute numerically these two quantities. Note that 8(t) is half the vorticity thickness 
of the baroclinic layer. Using (3.2) and (3.6), the asymptotic value of the vorticity of the 
layer at the stagnation point (7 = 0) can easily be infered from (3.7): 

ApL sin (0) 
Q,=- (2n)'lZ JRe1I2 y' lz . 

Finally, a main implication of the model is the derivation of an analytic expression 
for the Richardson number at the stagnation point of the layer when the asymptotic 
stationary regime is reached, Ri,. The expression for Ri, is obtained from (3.1), using 
(3.8) and (3.7) for 7 = 0, 

(3.9) 

(Note that Rim does not explicitly depend upon the Prandtl number, J being 
proportional to Pr112.) 

The test of this model against our numerical simulations has to be done in two steps. 
We first have to compute the physical parameters characterizing the baroclinic layer 
(besides those characterizing the flow: J,  Re and Pr),  which are the strain rate y, its 
angle with the horizontal 6 and the density difference across the layer Ap,. Then, we 
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shall test the asymptotic theoretical expressions for the thickness of the layer (3.2), the 
velocity difference across the layer (3.6), and the vorticity and local Richardson 
number at its stagnation point (3.8) and (3.9) respectively. In what follows, the 
asymptotic equilibrium state of the layer will be assumed to be the state of maximum 
vorticity (over space and time). According to figure 15(a), this state is reached at 
t z 52, provided that Re 2 400. All comparisons with asymptotic theoretical 
predictions will thus be made at t = 52, the values of y, 8 and Ap,  being taken at that 
time as well. 

3.3.2. Numerical computation of the physical parameters characterizing the baroclinic 
layer 

Outer velocityJield acting upon the layer. We define numerically the 7 = 0 axis by the 
loci of the baroclinic layer where the vorticity is maximum. A locally orthogonal 
coordinate system (a, 7) can then be defined anywhere along this line of maximum 
vorticity loci, originating at a given point of this line. In the present case, we shall only 
need to define this coordinate system at the stagnation point : the dependence on 7 will 
only be examined across this particular locus of maximum vorticity. By contrast, the 
dependence on the curvilinear coordinate a will be computed away from the stagnation 
point, along the curved line of maximum vorticity loci. 

We first need to check that the outer velocity field acting upon the baroclinic layer 
in the neighbourhood of the stagnation point is a pure strain field with uniform and 
constant strain rate. Figure 9(a)  displays the component of the total velocity field along 
the 7 = 0 axis for run 4 (Re = 1000) as a function of a, at t = 39. A linear dependency 
is obtained, with slope z 0.155. The component of the total velocity field along the 
a = 0 axis is plotted in figure 9(b) versus 7, at the same time; a linear dependency with 
same slope as in figure 9(a)  is obtained. These results are compatible with the 
assumption that the outer velocity field acting upon the layer at that time is a pure 
strain field, with uniform strain rate. The same curves are plotted at t = 52 (figure 
9c,  d ) ,  at the time the layer is assumed to reach an equilibrium state. The same linear 
dependency is observed, but note that the slope (i.e. the strain rate) has increased by 
about 16%, being now equal to 0.18. This point will be discussed below. 

The model of Corcos & Sherman also assumes that the vorticity D and density of the 
layer are independent of a. We have checked that, at the time the layer reaches an 
equilibrium state, SZ varies by less than 3 % for Re = 2000, and by 4 %  for Re = 400, 
over a distance from the stagnation point equal to one height of the streamwise extent 
of the numerical domain. For the density field, figure 7 clearly shows that, in the 
neighbourhood of the stagnation point, constant contours of the density are close to 
straight lines along the direction of the layer (i.e. have a very large radius of curvature 
compared to the layer thickness). The fact that the vorticity and density of the layer are 
quasi-independent of a, and that the layer is nearly straight, implies that the velocity 
field associated with the layer is close to a parallel flow. This justifies the main 
assumption of the model that the vorticity and density of the layer are passively 
advected by the strain field. 

The temporal behaviour of y is displayed in figure 10 for runs 2-7. In this figure as 
well as in the remainder of this paper, y is computed using the analytic expression 
(Dritschel et al. 1991, p. 660) 

y = t - V u - t  with t = - i , x n  and n = Vw/lVwl; (3.10) 

V u  is the second-order tensor of the velocity derivatives and V w ,  the gradient of the 
vorticity of the flow. t is a unit vector parallel to the vorticity contours having larger 
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FIGURE 9. Run 4. (a) Component along the direction of the layer (7 = 0) of the total velocity field, 
u,, versus CT, at t = 39; (b)  Component perpendicular to the direction of the layer (CT = 0) of the total 
velocity field, vnl versus 7, at the same time. A dashed line of slope 0.155 is drawn. (c, d )  Analogous 
to (a, b) respectively, at t = 52. A dashed line of slope 0.18 is drawn. 

vorticity on the right. Thus, in the neighbourhood of the baroclinic layer, y is the strain 
rate along this layer. Since y is undefined at the stagnation point of the layer, its value 
at location (CT = 0 , ~  = &(t)) will be computed instead, with &(t) defined by (3.7). 

Figure 10 shows that, as the primary instability develops, y increases from a small 
but non-zero value (due to the initial two-dimensional perturbation) and reaches a 
regime, between t z 20 and t z 40, where it is about constant. Note that y is almost 
Reynolds-number independent, especially for Re 2 1000. The reason is that the outer 
velocity field acting upon the layer is induced by the Kelvin-Helmholtz vortex (and the 
surrounding end part of the baroclinic layer), which is a large-scale structure. However, 
this structure is not stationary: the end parts of the baroclinic layer are advected by the 
local flow, which makes the size of the Kelvin-Helmholtz vortex increase. This may 
account for the small increase of y (by 16%), which is observed from t z 40: y is 
indeed roughly proportional to the circulation of the velocity field around this large- 
scale structure. Figure 9(c, d )  show that, during this stage of the flow, the outer velocity 
acting upon the layer still remains of the pure strain type. Note that the slope of 0.18 
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FIGURE 10. Temporal evolution of the strain rate y at location (CT = 0 , ~  = d’(t)), with 8(t)  defined by 
(3.7). A, Re = 140; B, Re = 400; C ,  Re = 1000; D, Re = 1500; E, Re = 2000; F, Re = 2600. (Runs 
2-7.) 

displayed in these figures is in agreement with the strain rate at that time ( t  = 52) 
plotted in figure 10 (the same remark holds for t = 39, with y = 0.155). 

Angle of the layer with the horizontal. The temporal behaviour of the angle 8 that the 
baroclinic layer makes with the horizontal at the stagnation point is plotted in figure 
1 1 for different initial Reynolds numbers. 0 appears to be independent of Re, at least for 
Re 2 400. The same argument as for the strain rate y can be invoked, since 0 results 
from the nonlinear development of the large-scale Kelvin-Helmholtz vortex. 

Density diference across the layer. The density difference across the layer ApL is 
defined by (3.7): it is twice the value of the density at the distance along 7 (from the 
stagnation point) where the error function attains its asymptotic value. For q/i?(t) = 3, 
p(7) = ApL/2 within 0.2%. This is good enough precision for the present numerical 
comparison with the theory and ‘infinite’ distance from the stagnation point will thus 
be assumed to be reached at 36(t). This provides an estimate for the overall layer 
thickness 2’ defined in 93.3.1 : 2’ = 66(t). The values of ApL computed numerically (at 
a distance k 3S(t) from the stagnation point) are indicated in table 1 for runs 2-7, at 
t = 52. ApL appears to be quasi-independent of the Reynolds number, as is the angle 
8. Moreover, we have found that this quantity varies by 20% at most between t z 30 
and t = 58. 
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FIGURE 11. Temporal evolution of the angle 19 (in degrees) that the baroclinic layer makes with 
horizontal at the stagnation point. A, Re = 140; B, Re = 400; C ,  Re = 1000; D, Re = 1500; E, 
Re = 2000; F, Re = 2600. (Runs 2-7.) 

3.3.3. Test of the model 
Thickness of the layer. The thickness of the layer 6(t) is defined numerically by (3.7): 

it is the distance 7 from the stagnation point at which the vorticity 52 is equal to 
e-"/452(7 = 0, t).  6(t) is plotted versus time for runs 2-7 in figure 12(a). Two regimes can 
be clearly distinguished (for Re 2 400). An inviscid regime first sets in, up to t z 20, 
which is associated with the development of the primary Kelvin-Helmholtz instability, 
during which the evolution of the layer thickness is controlled by the growing strain 
field. Once the scale at which viscous diffusion is active is reached, an equilibrium 
quickly occurs, formalized by (3.2). This can be seen in figure 12(b) where 6(t = 52) 
computed numerically and 6, defined by (3.2) are plotted versus the initial Reynolds 
number using a log-log scale. Since y( t  = 52) is almost independent of Re (see figure 
lo), the theoretical values follow the Rep1/' decay law quite closely. Moreover, good 
agreement is found with the values computed numerically : figure 12 (b) shows that, for 
Re 2 400, both numerical and theoretical values differ by 20% at most. 

Velocity diflerence across the layer. The derivation of equation (3.9, which yields the 
asymptotic expression for the velocity difference across the layer, assumes that the net 
flux of vorticity along the layer results solely from the advection by the component 
along cr of the pure strain field, suycr52 dy. This assumption is verified in figure 13 : the 
total flux of vorticity along cr, Ju u, 52 d7 is found to be in good agreement with the pure 
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FIGURE 12. Half-thickness of the vorticity layer 8(t), defined by (3.7). (a) Versus time: A, Re = 140; 
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FIGURE 13. Run 4 (Re = 1000) at t = 52. Net flux along the layer of the vorticity 4 advected by the 
total velocity field, J u, f? dq (-) and by the pure strain field, J y r 4  dq (- - - -). and 7 are defined 
in figure 8, y is the strain rate (see figure 10). 

strain contribution alone. For the second assumption used in the derivation of (3.5), 
we have checked that sin (6) Ap, varies by 40 YO at most for 20 < t < 52 whatever Re, 
while the exponential term decreases by a factor M 100 during the same time, both 
terms being of the same order at the ‘initial’ time t = 20. (Computation of A in (3.5) 
at this initial time yields a positive value of order 1.) 

The asymptotic setting-up of a constant velocity difference across the layer is now 
examined. This velocity difference is computed by summing D over a distance 2 of 
66(t) across the layer (see 63.3.2). The temporal evolution of AV(t) = J y D d ~  is plotted 
in figure 14(a) for runs 2-7. At t = 0, this velocity difference is close to 2, which is the 
velocity difference between the horizontally oriented boundaries. For Re 2 400, A V(t) 
sharply decreases from t = 13, at about the same rate whatever Re: just as for 6(t), the 
evolution of AV(t) is controlled by the growing strain field during this sharp decrease, 
in agreement with (3.5). A plateau is then reached, whose value is almost independent 
of the Reynolds number, especially at large times (for t 2 40). This latter result is 
consistent with the fact that these velocity differences are equal at t = 0 and decrease 
at the same rate, independently of Re. AV(t = 52) computed numerically is tested 
against its theoretical expression (3.6) at the same time in figure 14(b). Very good 
agreement is found, the relative difference decaying from 21 % (for Re = 400) down to 
9 %  (for Re = 2600). Note that, for Re 2 400, both theoretical and numerical values 
become almost independent of the Reynolds number, because y, ApL and 6 also behave 
quasi-independently of this parameter. 

Vorticity at the stagnation point of the layer. Though the vorticity at the stagnation 
point of the layer, denoted D, hereafter, is simply the ratio of AV(t) to 2S(t), whose 
behaviour and asymptotic values have been shown to be very well predicted by the 
model of Corcos & Sherman, it is still interesting to examine its temporal evolution for 
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different Reynolds numbers. These evolutions are displayed in figure 15 (a). As already 
noted, two regimes appear clearly, especially for Re 2 1000: the temporal growth of 4 
does not depend upon viscous effects up to t M 20 but curves strongly separate from 
this time, essentially because of the influence of the Reynolds number upon the layer 
thickness : the baroclinic production rate of the vorticity in the layer being proportional 
to Jsin (0) ApL/S,  this rate increases with decaying layer thickness (sin (0) ApL being 
approximately constant). Since the vorticity is advected during the same time at a 
constant rate y ,  whatever Re, the equilibrium vorticity increases with Re but is reached 
at the same time, at t M 52. Equilibrium values of the vorticity are plotted versus Re 
in figure 15 (b) (for Re 2 400) and compared with the theoretical expression (3.8) at the 
same time. Remarkable agreement is obtained, the relative difference being always less 
than 4.4%. However, the Re1/' law predicted by the model is only verified for 
Re 2 1000, owing to the lower value of ApL below this Reynolds number. 

Finally, it is interesting to plot y and 4 as functions of 7 across the stagnation point 
at t = 52, for Re = 2000 (figure 16). Note the very sharp variation of 4 which contrasts 
with the quasi-uniform behaviour of y across the layer. This difference in behaviour is 
all the more striking since the Reynolds number is higher. 

Richardson number at the stagnation point of the layer. We first check that theoretical 
expression (3.7) for the density profile accurately predicts the profile numerically 
computed. (There is no doubt that the vorticity profile of the layer is well predicted by 
the model, according to figures 12b and 15b.) Both density profiles are compared in 
figure 17, for Re = 1000 at t = 52: remarkable agreement is obtained. 

The temporal evolution of the Richardson number at the stagnation point of the 
layer, Ri,, is plotted in figure 18(a). For Re 2 1000, Ri, constantly decreases from 
t M 13, at about the same rate until t M 25 (as the layer thickness does, see figure 12a). 
A plateau is reached from t % 40, whose value decreases with increasing Reynolds 
number, as expected. Ri,(t = 52) is plotted versus Re in figure 18(b) (for Re 2 400) and 
compared to its theoretical counterpart Rim. Very good agreement is obtained, 
especially for Re 2 1000. Note that, in addition, the Re-'/' decay law is well verified. 

As already noted in 53.2.3, Rim reaches a value as low as 0.046 for Re = 2600. We 
examine now why the stagnation point of the baroclinic layer remains stable. 

3.4. In$uence of the outer strain field on the stability of the baroclinic layer 
An heuristic argument can be proposed to account for the persistent stability of the 
baroclinic layer in the neighbourhood of its stagnation point, which is based upon the 
outer strain field acting upon the layer. Indeed, this strain field compresses the layer 
along 7, thereby reducing the growth rate of any perturbation, while its component 
along CT stretches any wavelength along that direction, so that the range of stable 
wavelengths may eventually be reached. 

Such an idea has been given a theoretical framework by Dritschel et al. (1991) in the 
unstratified and inviscid case, for a strip of uniform vorticity subjected to a strain field 
of constant strain rate. In this situation, the thickness of the vorticity strip decreases 
exponentially with time, so that perturbations always eventually decay (their growth 
rate vanishing as their wavenumber goes exponentially to zero). A linear stability 
analysis of the vorticity layer and its outer velocity field (which together form a time- 
dependent basic flow in this case) is conducted, which shows that transient growth of 
a perturbation is possible, depending upon the ratio of the strain rate y to the layer 
vorticity Q. When y /4  is greater than 0.25, no amplification of the perturbation 
occurs, but the perturbation is only amplified by a factor 3 (before decaying) when y /Q  
is as small as 0.065. Nonlinear simulations using a contour dynamics method are also 
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FIGURE 15. Vorticity at the stagnation point of the layer, Q,. (a) Versus time: A, Re = 140; B, 
Re = 400; C, Re = 1000; D, Re = 1500; E, Re = 2000; F, Re = 2600. (Runs 2-7.) (b)  Versus 
Reynolds number, for Re 2 400: 0, values computed numerically at t = 52; *, theoretical values SZ, 
given by (3.8) at the same time. A log-log scale base 10 is used. The slope of the straight line is t. 
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FIGURE 16. Run 6 (Re = 2000) for t = 52. Vorticity of the layer 52 (-) and rate of strain y (----) 
as functions of 7 for a = 0. (-52 has been represented for clarity.) See figure 8 for the definition of 
coordinates u and 7. 

presented, which show that the threshold value of y /Q  over which significant 
amplification occurs actually strongly depends upon the initial amplitude of the 
perturbation. 

Though the vorticity layers considered in the present study are continuous, stably 
stratified and viscous diffusion is active, it is still of interest to examine whether 
Dritschel et aZ.’s main result, namely that even a weak strain can prevent the instability 
from strongly amplifying, may help in interpreting our results. For this purpose, we 
have computed the key parameter y/Q at the stagnation point of the baroclinic layer, 
referred to as y/Q, hereafter, for the numerical simulations described in the previous 
section (runs 2-7 in table 1). y/Q, is plotted in figure 19 (as already noted in 33.3.2, the 
value of y at location (u = 0 , ~  = d(t))  has actually been used). The temporal evolutions 
of y and SZ, have been shown in figures 10 and 15 (a) respectively. The existence of two 
different successive regimes, inviscid and strongly Reynolds-number dependent, 
strikingly appears in figure 19. For t 2 15, y/Q,  decreases with increasing time and 
Reynolds number (except for Re = 140) and, for Re 2 1000, reaches a plateau. Though 
values as small as 0.045 for Re = 1000, 0.031 for Re = 2000 and 0.027 for Re = 2600 
are found, no instability develops at the stagnation point. The reason is very likely that 
the stable stratification contributes an additional stabilizing effect, quantified by the 
small but non-zero value of the Richardson number at the stagnation point of the 
layer. 

Within the framework of Dritschel et aZ.’s study, these results thus show that even 
a value of y/Q, as small as 0.027 with Ri, = 0.046 (for Re = 2600) would be enough 
to prevent the instability from amplifying. The smallness of these values would be 
consistent with Dritschel et aZ.’s findings. Support for the validity of this approach will 
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be provided in 54.4: threshold values for y/Q, and Ri, below which a secondary 
instability may occur will be proposed on an empirical basis. 

4. Secondary instabilities in a two-dimensional baroclinic layer 
4.1. Development of secondary instabilities in a shear layer with one 

Kelvin-Helmholtz vortex 
A secondary instability starts developing in the baroclinic layer from t z 44 and for 
Re > 1500. This instability does not develop in the neighbourhood of the stagnation 
point of the baroclinic layer and is not of the Kelvin-Helmholtz type. This unstable 
evolution is now described for Re 2 2000. 

Figures 20 (a, j )  respectively display the vorticity and density fields of the baroclinic 
layer just before the growth of the secondary instability becomes visible. Note the 
symmetry of the flow about the stagnation point of the baroclinic layer and about the 
centre of the Kelvin-Helmholtz vortex core (which is also a stagnation point); this 
symmetry results from the choice of the initial two-dimensional perturbation and from 
the symmetry conservation property of the Navier-Stokes equations. In the inner 
boundaries of the Kelvin-Helmholtz vortex two thin layers of vorticity of opposite 
(negative) sign to the vorticity of the baroclinic layer have developed. Thus, they form 
just below (or above, by symmetry) the part of the baroclinic layer that surrounds the 
Kelvin-Helmholtz vortex. Figure 20 ( j )  shows that these negative vorticity layers are 
generated by strong streamwise density gradients, and indirectly result from convective 
activity in the vortex core. Each negative vorticity layer, together with the adjoining 
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FIGURE 19. Temporal evolution of the strain rate y over the vorticity at the stagnation point of the 
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baroclinic layer of positive vorticity, creates a jet flow. The earlier stage of the 
secondary instability growth is visible in figures 20(b, c). As noted above, this 
instability does not develop at the stagnation point of the baroclinic layer. Rather, it 
is this jet configuration that becomes unstable. Indeed, we have observed that the 
production of negative vorticity in the vortex core is rapidly followed by the growth of 
the secondary instability; moreover, this instability does not develop if the negative 
vorticity is too low compared to the positive one. However, this jet configuration is 
embedded in a complex and non-stationary flow, which does not facilitate a 
quantitative study of the instability. In the remainder of the paper, this secondary 
instability will be referred to as the ‘near-core’ instability. 

The near-core instability amplifies while moving along the baroclinic layer. The 
velocity at which this instability moves can be estimated from visualizations of the 
vorticity field: a value equal to z 0.85 is found, which lies in between the velocity of 
the baroclinic layer at the inner (= 0.65) and outer boundary (= 1.3). This suggests that 
the near-core instability is advected by the local velocity of the flow. Figures 20(d-f) 
show that the part of the baroclinic layer surrounding the Kelvin-Helmholtz vortex is 
next strongly bent out of shape: the growth of the moving secondary instability has 
indeed led to the formation of pairs of counter-rotating vortices, one in each layer of 
vorticity, which together induce a velocity that pushes the fluid towards the irrotational 
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FIGURE 21. Development of secondary instabilities in a Re = 2600 shear layer (run 7). Contours of 
constant vorticity: (a) Q,,, = 6; (b) Q,,, = 4.5. d = 0.5. The arrow points towards a secondary 
Kelvin-Helmholtz vortex, which develops at the stagnation point of the baroclinic layer. 

region of the shear flow. This distortion of the baroclinic layer is more striking when 
Re = 2600 (figure 21a), very likely because the absolute value of both positive and 
negative vorticity is higher then. The flow around the stagnation point of the layer 
becomes progressively modified by the approaching growing instability. Figure 20 (g )  
shows that, in particular, two secondary vortices distort the vorticity layer there, 
eventually aligning it with the horizontal. This induces a strong perturbation in the 
baroclinic layer which becomes unstable a second time, now at the stagnation point 
(figure 20 h). This secondary instability is of the Kelvin-Helmholtz type. When 
Re = 2600, a secondary Kelvin-Helmholtz instability develops at the stagnation point 
as well, in a strongly inclined baroclinic layer, once the near-core instability has moved 
into this region of the flow (figure 21 b). This shows that the configuration of the two 
symmetric vortices near the stagnation point displayed in figure 29(g, h)  was a very 
particular one. The flow next consists of thin quasi-horizontal layers and small-scale 
vortices, of both signs of vorticity, which give it a turbulent character (figure 20i). Note 
that the large-scale Kelvin-Helmholtz vortex has disappeared. 

If the shear layer were unstratified, its mean thickness would grow linearly in time 
(e.g. Winant & Browand 1974). In the present case of a stably stratified shear layer, 
figures 20(i, k) show that this thickness reaches a constant limit. This behaviour has 
already been found and quantified by experimentalists. Thorpe ( 1  973) defined a 
Richardson number, Ri,,,, based upon the maximum mean thickness of the region of 
small-scale structures in the density field. This maximum thickness, h,,,, was measured 
from photographs of the experiments. In Koop & Browand (1979), this maximum 
thickness is empirically related to the density integral scale 

1 fa, 

by h,,, = 5OP. Here pe and pT are the values of the density at the lower and upper 
boundaries respectively. The computation of 0, for run 6 shows that Bp reaches a 
constant value equal to z 0.90 from t z 45. With our notation, Rim,, is defined by 

Rimax = Jhmaxl(28i) ( 4 4  
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which yields in the present case: Ri,,, = 0.37. This latter value is in good agreement 
with Thorpe’s study (for R, = 0.14 again, see $3.1), whose experimental conditions 
were very close to those of our numerical simulations. This underlines the validity of 
our two-dimensional approach for this statistical property of the shear layer. By 
contrast, Koop & Browand found a much lower value for Ri,,,, equal to 0.14. As 
already noted in $2.1, the mechanisms of instability at a high value of J in Koop & 
Browand’s experiments are very different from those leading to a Kelvin-Helmholtz 
instability, the initial flow conditions leading instead to interfacial wave breaking. 

Finally, we note that half the maximum thickness h,,,, equal to 2.25, is very close 
to the maximum height reached by the Kelvin-Helmholtz vortex, equal to 2.15 in units 
of Si, that we computed in $3.1. 

4.2. Analogy with three-dimensional turbulence 
It is the non-conservation of the local vorticity that makes possible the successive 
secondary instabilities displayed in figures 20 and 21, in permitting the existence of a 
baroclinic layer of higher vorticity than the maximum initial vorticity, as well as the 
generation of negative vorticity. This non-conservation of the local vorticity is also a 
fundamental feature of three-dimensional turbulent flows, even without body force. 
We now examine whether this fundamental analogy may give rise to analogous 
behaviour. For this purpose, the dissipation rate of the total energy is examined as a 
function of the Reynolds number for the series of calculations presented above (runs 
2-7 in table 1). 

The dissipation rate of the total energy is made up of two contributions, respectively 
corresponding to the dissipation rate of the kinetic energy and of the potential energy. 
In the following, the word ‘energy’, whether total, potential or kinetic, will refer to a 
quantity averaged over the numerical domain. For a stably stratified shear layer in the 
Boussinesq approximation, it is easy to show that the dissipation rate of the potential 
energy eEp  only depends upon the density difference A p  between the upper and lower 
horizontal boundaries (assuming that there is no mass flux across these boundaries) 
and is thus constant in time. (This behaviour is discussed in Lombard, Stretch & Riley 
1990.) The temporal evolution of the total energy can then be written as 

1 1 J  dE 
dt Re L, Pr = --(Z+ReeEp) with Ree,, = --- 4, - (4.3) 

Z is the enstrophy averaged over the numerical domain, defined by (2.9), and L, is 
defined in (2.6). Note that eEp is negative in the present case of a shear layer, Ap being 
positive. The constant value of eEP yields that the dissipation rate of the total energy 
is equal to Z*/Re, where 

Z* = Z+ Ree,, (4.4) 
is simply the usual enstrophy with an additive constant. This additive constant is the 
same for all the calculations presented here. 

Z *  is plotted in figure 22(a). Whatever the initial value of the Reynolds number 
(except possibly for Re = lOOO), Z *  exhibits a first maximum at t = 47; this is close to 
the time at which the vorticity layer reaches an equilibrium state, as predicted by the 
model of Corcos & Sherman (1976) and checked in $3.3. The maximum vorticity of the 
flow is reached in the baroclinic layer up to this time (see figure 15a) and it is thus this 
part of the flow that controls the evolution of the total enstrophy. Z *  continues to 
increase for Re 2 1500, when secondary instabilities develop in the baroclinic layer. A 
second maximum is then reached, at a time quasi-independent of the Reynolds 
number, equal to E 64. The value of this second maximum is strongly dependent on 
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the Reynolds number however and it is thus of interest to examine the behaviour of 
Z * / R e  for Re 3 1500. This quantity is plotted in figure 22(b). The second maximum 
of Z * / R e ,  reached at a time when the flow has become turbulent through secondary 
instabilities, seems to tend towards a constant limit as the Reynolds number increases. 
Such behaviour is analogous to that found for instance by Brachet (1990) for the three- 
dimensional unstratified Taylor-Green vortex. This suggests that the dissipation rate 
of the total energy becomes independent of the viscosity in the limit of zero viscosity; 
in other words, this dissipation rate is controlled by nonlinear effects in this limit (e.g. 
Lesieur 1990). 

Note that this analogous behaviour between the viscous stably stratified shear layer 
modelled by the Boussinesq approximation and three-dimensional turbulence with 
finite viscosity parallels that used by, e.g., Pumir & Siggia (1992) between three- 
dimensional axisymmetric Euler equations with swirl and two-dimensional inviscid 
Boussinesq equations in their search for a possible singularity at a finite time of the 
three-dimensional Euler equations. 

4.3. Influence of a pairing on the growth of secondary instabilities 
It is clear that the late evolution (for t 3 70) of the unstable flow displayed in figures 
20 (g-i) is strongly influenced by the periodic boundary conditions and by the 
symmetry of the flow. In order to examine the role of these numerical constraints upon 
the behaviour of the shear layer, a situation where two Kelvin-Helmholtz vortices can 
develop and pair will now be studied. As mentioned in $2.1, two different amplitudes 
of the subharmonic perturbation at t = 0 will be considered. 

4.3.1. Influence of a subharmonic perturbation of strong amplitude 
The calculation involving the subharmonic perturbation with the strongest 

amplitude is first described (run 12 in table 1 ) .  (We recall that the velocity amplitude 
of this subharmonic perturbation is 2.5 smaller than that of the fundamental 
perturbation.) The spatial distribution of the vorticity of the flow just before a 
secondary instability develops is displayed in figure 23 (a).  Note that the symmetry of 
the flow about its stagnation points is now broken, because of the presence of the 
subharmonic perturbation. The maximum of this perturbation is located at the centre 
of the right-hand vortex, while its minimum coincides with the centre of the left-hand 
one. Instabilities are thus promoted in the right-hand vortex: we observe indeed that 
the amplification of the secondary instability is much stronger for this vortex than for 
the left-hand one (figure 23b). This instability is the same as in figures 20 and 21 : it 
develops near the unstably stratified regions of the vortex core and amplifies while 
moving along the baroclinic layer. It is thus a near-core instability. While amplifying, 
very small scales are generated, which quickly invade the whole area of the right-hand 
vortex (figure 23 d ) .  The filling of primary vortex structures by small-scale motions had 
already been noted by Thorpe (1971) in his experiments on a temporally growing shear 
layer. The baroclinic layer left behind the pairing vortices is stretched, thinned but 
reinforced by baroclinic effects: thus it becomes unstable a second time, now at its 
stagnation point (figure 23c, arrow 1 ) .  Figure 23(d)  shows that this newly growing 
instability has the structure of a Kelvin-Helmholtz instability. As the secondary 
Kelvin-Helmholtz vortices are entrained at different velocities by the local shear, the 
vorticity layer between them is again stretched and reinforced by baroclinic effects, so 
that a new Kelvin-Helmholtz instability can develop there. Figure 23 (e)  thus displays 
Kelvin-Helmholtz vortices at different scales. If the initial Reynolds number were 
higher, the instability could proceed at smaller and smaller scales, thereby transferring 
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FIGURE 23. Development of secondary instabilities in a Re = 2000 shear layer with pairing (run 12). Contours of constant vorticity : 
(a) Q,,, = 4.8; (6)  Q,,, = 5; (c) Q,,, = 5.2; (d) Q,,, = 4.8; (e) Q,,, = 4.4. d = 0.4 except for (6) where d = 0.5. cf> Contours of 
constant density corresponding to (e); d = 0.1. The secondary Kelvin-Helmholtz vortices that develop in the baroclinic layer are 
visualized by arrows and numbered in order of appearance. 
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energy towards dissipative scales through a mechanism consisting in a succession of 
self-similar Kelvin-Helmhol tz instabilities. 

Figure 23 shows that pairing starts to occur, but at a slow rate. More precisely, the 
centre of the left-hand vortex remains at the same location in figure 23(c,  d )  (and the 
right-hand vortex hardly moves from one figure to the other), while secondary 
instabilities amplify: as noted by a referee, this suggests that the amplification of 
secondary instabilities may halt the development of the large-scale subharmonic 
instability, at least temporarily. Figure 23 (e) shows indeed that the vortices have 
resumed their displacements, one towards the other, once the secondary instabilities 
have developed. This slowness of the large-scale subharmonic instability contrasts with 
the strong nonlinearity of the flow at small scales and illustrates the temporal 
decoupling between these scales of motion (buoyancy dominating over inertia at large 
scales, and vice versa at small scales). 

At lower values of Re, between 400 and 1000, the flow dynamics exhibit a different 
behaviour. The near-core secondary instability does not develop (whether pairing 
occurs or not), possibly because the vorticity of the baroclinic layer and of the adjacent 
layer of negative vorticity are too weak to allow the development of this instability. 
More precisely, for this range of Reynolds numbers, the flow with one Kelvin- 
Helmholtz vortex is found to be always stable. By contrast, when two primary 
Kelvin-Helmholtz vortices can develop and pair, secondary Kelvin-Helmholtz 
instabilities are able to grow upon the baroclinic layer. This latter result is illustrated 
with two calculations for Reynolds numbers equal to 1000 and 400 (runs 10 and 9 in 
table 1) through constant contours of their vorticity (figures 24 and 25). Figure 24 
exhibits two noticeable features : a large-scale vortex structure resulting from pairing, 
and the presence of two secondary Kelvin-Helmholtz vortices that have already grown 
in the baroclinic layer left behind by the pairing vortices. Vorticity contours of the 
Re = 400 shear layer are plotted in figure 25 at two successive times. Pairing clearly 
occurs in figure 25 (a). In figure 25 (b), a secondary Kelvin-Helmholtz instability 
develops in the baroclinic layer. As opposed to the pairing flows just described, the 
basic flow of this instability is the entire baroclinic layer (and not only its centre part): 
the rather large molecular viscosity may be responsible for this, in allowing for rapid 
diffusion of vorticity across the layer. Consequently, this instability is of large 
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FIGURE 25. Development of a secondary Kelvin-Helmholtz instability in a Re = 400 shear layer with 
pairing (run 9). Contours of constant vorticity: (a) Q,,, = 1.36; d = 0.08; (b) Q,,, = 1.3; d = 0.1. 
The secondary Kelvin-Helmholtz instability that develops in the baroclinic layer is visualized by an 
arrow. 
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FIGURE 26. Development of secondary instabilities in a Re = 2000 shear layer with pairing (run 14). 
Contours of constant vorticity: (a) a,,, = 5 ;  d = 0.5; (b) Q,,, = 4.5; d = 0.4; (c)  Q,,, = 4; d = 0.5; 
(d) Q,,, = 3.5; d = 0.25. The bracket and the arrows locate some secondary Kelvin-Helmholtz 
vortices. 

wavelength, A ,  because the half-thickness of the baroclinic layer, 8, is much larger than 
in previous calculations and h = 148, according to linear stability theory. The large- 
scale vorticity structures that form in this flow contrast with the very small scales 
displayed in figure 23 for the Re = 2000 counterpart flow. 

4.3.2. Influence of a subharmonic perturbation of weaker amplitude 
The calculations with Re = 400 and 2000 presented above have been carried out 

again with a velocity amplitude of the initial subharmonic perturbation equal to 1/10 
of that of the fundamental mode (runs 13 and 14 in table 1). The main features of these 
calculations are described now. Pairing occurs, but very late in time, and the evolution 
of each flow does not change markedly compared to the situation described above 
where these flows were forced for pairing. 

Constant contours of the vorticity when Re = 2000 are displayed in figure 26. Figure 
26 (a), plotted at the same time as figure 23 (b), clearly shows the development of the 
near-core instability, which now affects both Kelvin-Helmholtz vortices : the 
promoting effect (on the right-hand vortex) and attenuating effect (on the left-hand 
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No. primary KH vortices < 400 400 + 1000 1500 > 2000 
- - 1 KH vortex Second. Second. NC 

NC instab. and KH instab. 

vortices instab. and KH instab. and KH instab. 

TABLE 2.  Growth of secondary instabilities in the baroclinic layer (KH: Kelvin-Helmholtz, NC: near- 
core), as a function of the initial Reynolds number and the number of primary Kelvin-Helmholtz 
vortices developing in the flow. Two different amplitudes of the subharmonic perturbation have been 
used (see 42.1) except for Re = 1000 and 1500, where the flow was only forced for pairing. For 
Re = 400, the secondary Kelvin-Helmholtz instability amplifies very weakly when the subharmonic 
perturbation has the lowest amplitude. -: No secondary instability. 

2 KH pairing - Second. KH Second. NC Second. NC 

vortex) of the subharmonic perturbation upon this secondary instability are less 
different in the present situation because of the lower initial amplitude of this 
perturbation. The near-core instabilities next amplify and move towards the stagnation 
point regions of the baroclinic layers. This triggers secondary Kelvin-Helmholtz 
instabilities in the right-hand baroclinic layer, as shown in figure 26 (b) (a more complex 
situation sets in in the left-hand layer). Comparison with figure 23(d) ,  plotted at the 
same time, shows that secondary instabilities have already amplified in the case of a 
stronger subharmonic perturbation. The earlier occurrence of pairing is responsible for 
this earlier unstable behaviour, as argued in $4.5. However the occurrence of pairing at a 
slower rate in the present case simply delays the development of secondary instabilities : 
figure 26 (c) thus shows that both near-core and secondary Kelvin-Helmholtz 
instabilities amplify upon the baroclinic layers. Moreover, the growth of these 
secondary instabilities seems to temporarily halt the pairing process, as already noted 
for the forced case : the centres of the large-scale Kelvin-Helmholtz vortices have 
indeed remained at the same location, compared to figure 26(b). The evolution of the 
flow when we stopped the numerical simulation is displayed in figure 26(d) :  pairing 
clearly occurs. A hierarchy of instabilities is visible in this figure. Besides pairing, a 
large-scale secondary Kelvin-Helmholtz instability (visible in the middle of the figure 
and located by a bracket) has grown upon the whole baroclinic layer and is collapsing 
at the time the figure is plotted. Two small-scale secondary Kelvin-Helmholtz 
instabilities (located by arrows) are growing in the centre part of the baroclinic layer. 
Another small-scale secondary Kelvin-Helmholtz vortex is visible in the baroclinic 
layer surrounding the pairing vortices, having been advected there. This strongly 
unstable character of the flow thus induces a very complex behaviour. It seems, at this 
stage, that only a statistical description would provide quantitative and deeper insight 
into the dynamics of the flow. 

For the Re = 400 calculation (not shown) pairing occurs as well, at a later time than 
in the counterpart flow forced for pairing: the stage of the flow displayed in figure 25(a) 
now occurs at t z 120. A secondary Kelvin-Helmholtz instability also develops in the 
baroclinic layer, while pairing is occurring; but, very likely because this instability 
grows late in time in a strongly stratified and rather viscous flow, it hardly amplifies. 

The occurrence of a secondary near-core and/or Kelvin-Helmholtz instability in the 
baroclinic layer is summarized in table 2,  depending upon the value of the initial 
Reynolds number and whether pairing is allowed to occur in the flow. 
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4.4. An empirical criterion for the development of secondary Kelvin-Helmholtz 
instabilities 

In figure 23 (c), the secondary Kelvin-Helmholtz instability develops at the stagnation 
point of the right-hand baroclinic layer from t ~ 6 2 ,  that is at a time at which the 
outer velocity field acting upon the layer may still be modelled by a pure strain field. In 
order to get an idea of the threshold values for both y / 0 ,  and Ri, below which a 
secondary Kelvin-Helmholtz instability develops (see 8 3.4), we have computed y and 
y / 0 ,  for the calculation displayed in this figure. We assume then that the development 
of the near-core instability only provides the necessary perturbation to trigger the 
secondary Kelvin-Helmholtz instability, this perturbation being of small enough 
amplitude to preserve the structure of the outer strain field acting upon the layer. 

The temporal behaviour of y is displayed in figure 27(a) and compared to its 
evolution for the Re > 1500 calculations with one Kelvin-Helmholtz vortex with 
already plotted in figure 10. Notice that y appears to be remarkably Reynolds-number 
independent for these three latter calculations. All curves in figure 27(a) exhibit the 
same initial growth rate and reach a maximum value at the same time ( t  z 20): the flow 
dynamics are driven by the growth of the fundamental perturbation up to this time (see 
figure 5). However, this maximum value is lower for the pairing calculation. Most 
interestingly, for this latter calculation y next smoothly decreases and eventually 
attains half the value that it has in the non-pairing calculations. A physical argument 
to account for this behaviour, related to the concurrent growth of the subharmonic 
instability, will be provided in the next section. 

The temporal behaviour of 0, for the pairing calculation is analogous to that of its 
non-pairing counterpart flow (run 6, plotted in figure 15a) up to t z 30, and increases 
slightly less from this time on (being at most 5 %  smaller); 52, next reaches an 
asymptotic limit from t z 50. 

It follows that the ratio 7/52, for the pairing calculation always has the smallest value 
as time evolves. This appears clearly in figure 27(b), where y is now plotted relative to 
0,. Figure 27(b) shows that y / 0 ,  for the pairing calculation reaches a minimum just 
before the secondary Kelvin-Helmholtz instability becomes visible, at t z 57 (see figure 
23c). This minimum value is equal to 0.0185. At the same time, the Richardson number 
of the stagnation point of the layer is equal to 0.04. These two values, y / 0 ,  = 0.0185 
and Ri, = 0.04, may provide thresholds for the development of the secondary 
Kelvin-Helmholtz instability. They are very small, which is consistent with the 
theoretical analysis derived by Dritschel et al. (1991). 

As found by those authors however, it is very likely that the threshold value for y / 0 ,  
below which amplification occurs strongly depends upon the amplitude of the 
perturbation at  the stagnation point. Although possibly small in the present case, this 
amplitude is not infinitesimal. A linear stability analysis of this problem, whose basic 
profiles may be assumed to be stationary and made up of the vorticity and density 
profiles (3.7) subjected to a pure strain field of constant strain rate, would very 
probably lead to an even smaller threshold for amplification. It would be desirable to 
conduct such a stability analysis to test this idea and estimate the validity of our 
empirical results. 

4.5. Discussion 
We have shown that an earlier near-core secondary instability (as we refer to it) grows 
for Re > 1500 in the baroclinic layer, apparently once a negative vorticity layer of 
magnitude comparable with that of the positive vorticity of the adjacent baroclinic 
layer has formed in the inner boundary of the primary Kelvin-Helmholtz vortex. This 
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FIGURE 27. (a) Strain rate y near the stagnation point of the baroclinic layer (see figure 10) versus 
time: -, Re = 1500 (run 5 ) ;  ----, Re = 2000 (run 6); --, Re = 2600 (run 7); ---, 
Re = 2000 (run 12). (b)  Ratio of y to the vorticity at the stagnation point of the layer, SZ,,  versus time 
for the same four runs. 
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negative vorticity is formed baroclinically when heavy (or light) fluid has completed a 
first revolution inside the primary Kelvin-Helmholtz vortex : such convective motion 
reinforces locally streamwise density gradients, in squeezing light fluid tongues between 
heavy fluid ones (see figure 20j). This convective motion essentially depends upon the 
development of the primary Kelvin-Helmholtz vortex, that is upon J :  this is why, as 
shown in table 1, the near-core secondary instability develops at about the same time 
(tNc z 44), quasi-independently of the Reynolds number. 

These calculations have also shown that a necessary condition for a secondary 
Kelvin-Helmholtz instability to develop at the stagnation point of a baroclinic layer is 
that the stabilizing strain field acting in this region of the flow is suppressed, or at least 
significantly weakened. In all situations involving the growth of only one Kelvin- 
Helmholtz vortex, this condition is reached when the end part of the baroclinic 
layer, advected by the local shear, has invaded the stagnation point region. The outer 
velocity field acting upon the layer is thus no longer of the pure strain type; however 
this region soon becomes confined inside a complex flow : consequently, a strong enough 
perturbation has to be induced there to trigger the instability. This perturbation is 
provided by the near-core instability. This argument is supported by the fact that, when 
no near-core instability develops, the stagnation point of the baroclinic layer remains 
stable, even when its end part has reached the stagnation point region. This is the case 
for R e d  1000 (the length of the baroclinic layer may also come into play for 
Re < 1000, as discussed just below). As well, when Re = 1500, the amplification of the 
near-core instability is too weak to trigger an instability at the stagnation point and the 
baroclinic layer remains stable. A second necessary condition has to be fulfilled for 
the secondary Kelvin-Helmholtz instability to be able to grow, which is related to the 
length of the baroclinic layer compared to the wavelength of the perturbation. Since 
this wavelength is of order 146 and 6 is plotted in figure 12(a), it can be easily estimated. 
Figure 7 thus shows that this instability has enough space to grow upon the baroclinic 
layer for Re 2 1000. It follows from this study of non-pairing flows that the secondary 
Kelvin-Helmholtz instability occurs rather late in the flow development, not before 
t z 65 according to table 1. 

For a given value of Re, we have found that the baroclinic layer is much more 
unstable to secondary Kelvin-Helmholtz instability when pairing occurs in the flow. 
Indeed, such a secondary instability is found to develop for Re 2 400 when the flow 
is forced for pairing, for Re 2 1000 (very likely) when the kinetic energy of the 
subharmonic mode relative to that of the fundamental mode is divided by z 16 
compared to the forced case, and for Re 2 2000 when no pairing occurs. The 
occurrence of pairing always arises late in time because we are dealing with strongly 
stratified flows, so that the end part of the baroclinic layer has already been advected 
into the stagnation point region at that time (except for run 12, as discussed below). 
But, as opposed to the non-pairing flows described above, pairing relaxes the strong 
constraint of the confinement of the layer (see figures 24 and 25), which promotes the 
secondary instability growth. Also, the length of the layer increases while pairing is 
occurring, so that this layer soon becomes able to sustain the wavelength of the 
secondary instability, even at low Reynolds number. 

For run 12, involving a strong-amplitude subharmonic perturbation and a high 
initial Reynolds number (Re = 2000), pairing occurs faster than for any other 
calculation involving pairing. We also observe that the secondary Kelvin-Helmholtz 
instability develops early, and that, at that time the end part of the baroclinic layer has 
not yet invaded its stagnation point region. Thus, as we assumed in the previous 
section, the secondary Kelvin-Helmholtz instability develops upon a baroclinic layer 
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still subjected to a pure strain field. The strain rate has however been weakened (see 
figure 27), which permits the growth of the instability. To understand this, we have to 
relate the occurrence of pairing to the smaller value of the strain rate. For this purpose, 
we need to recall the definition of the strain rate induced by the primary 
Kelvin-Helmholtz vortices at the stagnation point of the baroclinic layer located in 
between them. From the Biot-Savart law, y is roughly proportional to the circulation 
of the vortices divided by the distance squared between each vortex (its centre, say) and 
the stagnation point. When the vortices move towards each other for pairing, their 
circulation decreases (or, at best, remains unchanged), while their distance from the 
stagnation point increases. It follows that y decreases during this event. Arguments can 
also be provided for the vorticity at the stagnation point of the layer, Q,, to keep nearly 
the same asymptotic limit as in the non-pairing flow: though the angle of the baroclinic 
layer with the horizontal decreases when pairing is initiated, and so therefore does the 
baroclinic production of vorticity, the advection rate (equal to y )  of this vorticity also 
decreases, which leaves the velocity difference across the baroclinic layer about 
constant (see $3.1). Because the layer is stretched by the pairing process, its thickness 
(which should increase by (3.2)) remains about the same. It follows that the ratio y / a ,  
decreases during pairing, which relaxes the strength of the outer strain field and permits 
the growth of the secondary Kelvin-Helmholtz instability. 

This argument is not specific to pairing flows. For instance, in a natural (i.e. 
unforced) shear layer, the relative phase of the primary Kelvin-Helmholtz vortices is 
random along the streamwise direction. If two such vortices grow far enough apart, the 
baroclinic layer in between them becomes less constrained and a secondary instability 
may amplify. This can be checked easily by initializing a numerical simulation with a 
random perturbation (a white noise perturbation, for the stream function), instead of 
a deterministic perturbation, in a numerical domain of long enough streamwise extent 
(run 15 in table 1). Such a calculation is presented in figure 28, the streamwise extent 
here being equal to four fundamental wavelengths. For some realization of the white 
noise, only three Kelvin-Helmholtz vortices develop in the numerical domain (the 
relative phases of the wavenumbers, which are all initially present, being randomly 
distributed) (figure 28 a). A secondary instability is observed in the longest baroclinic 
layer that forms in between the primary vortices (figure 28b). 

This argument has also been illustrated numerically in Staquet (1994), to allow a 
more quantitative study. In that paper, the length of the baroclinic layer is progressively 
increased, in order to make the strain rate y, and thus the ratio y/52,, decrease. Only 
when y/Q, goes below the value of z 0.02 (with Ri, z 0.07) does a secondary 
Kelvin-Helmholtz instability develop at the stagnation point of the layer. This value 
is consistent with the threshold value found in the present study (the Richardson 
numbers at the stagnation point having closed values). It is interesting to mention that, 
as the length of the baroclinic layer is increased, Ri, remains about the same. Thus, in 
this study, the stability of the layer is clearly controlled by the parameter y/Q,. 

It is reasonable to assume that the threshold value for y/O,  below which a secondary 
instability may develop does not depend upon viscous effects : this secondary instability 
is of the Kelvin-Helmholtz type, which is an inviscid instability. The viscosity comes 
into play only indirectly, in imposing a constant thickness on the baroclinic layer. We 
also assume that the threshold value found for y/Q,  does not depend upon the 
amplitude of the perturbation leading to the instability, that is that this threshold value 
was computed during a linear regine. This threshold value has been obtained for a fixed 
value of 52, (as shown above) and for y decreasing (through pairing). We shall now use 
this result to estimate the minimum initial Reynolds number (Remin) that is necessary 
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[ t =  136.6 

FIGURE 28. Run 15. Contours of constant vorticity. (a) Om,, = 2.8; the location where a secondary 
Kelvin-Helmholtz instability starts growing is indicated by an arrow. (b) Q,,, = 3.2, d = 0.2. 

for a secondary Kelvin-Helmholtz instability to develop upon the baroclinic layer of 
the flows with one Kelvin-Helmholtz vortex that we have studied. y will now have a 
fixed value and it is Q, that will vary (through Re). The baroclinic layer is assumed to 
be subjected to a pure strain field, with only a small perturbation to trigger the 
instability. We use Corcos & Sherman's model in a predictive manner. The minimum 
Reynolds number that we seek is the one for which the vorticity satisfying the criterion 
y/Q, = 0.0185 is the maximum vorticity of the flow. The expression for this maximum 
vorticity is (3.8). Thus, on plugging y/Q, = 0.0185 into (3.8), one gets Remin z 5850 
(with y = 0.18, 6' = 27" and ApL = 1.78, from 93.3.2, which are all parameters 
independent of the Reynolds number). For this threshold Reynolds number, the 
instability would grow from t z 52 (see figure 15a) and this time should decrease for 
Re > Re,,,. This earlier occurrence of a secondary Kelvin-Helmholtz instability is 
currently impossible to obtain in a direct numerical simulation but is very likely to 
occur in a strongly stratified geophysical flow. 

Finally, note that, in all calculations of the present paper, the development of the 
secondary Kelvin-Helmholtz instability yields the formation of well identified vortices 
compared to the primary Ke1vit.r-Helmholtz instability. This is attributable to the very 
small value of the Richardson number of the baroclinic layer. 

4.6. Comparison with theoretical predictions and numerical observation 
of secondary instabilities in a stably stratified shear flow 

4.6.1. Theoretical predictions 
Klaassen & Peltier (1989) have analysed the stability of a primary Kelvin-Helmholtz 

vortex to two-dimensional perturbations. For flow parameters Re = 300, J = 0.07 and 
Pr = 1 they found an instability located at the stagnation point of the baroclinic layer, 
of the same periodicity as the Kelvin-Helmholtz wave. They suggested that this 'braid 
instability', as they refer to it, may correspond to a secondary Kelvin-Helmholtz 
instability. However, they noted several important differences between the two 
instabilities, among them being that the structure of the eigenfunction of the braid 
instability does not match that of the Kelvin-Helmholtz instability. Moreover, we 
noted in 94.5 that, because of the stabilizing action of the outer pure strain field, a 
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secondary Kelvin-Helmholtz instability may be able to grow upon a baroclinic layer 
only for a very high value of the initial Reynolds number. For the flow parameters 
studied by Klaassen & Peltier, the minimum value of Re would be equal to 11 000 (see 
Staquet 1994). These remarks suggest that the braid instability found by Klaassen & 
Peltier may not be of the Kelvin-Helmholtz type. We also notice that no secondary 
near-core instability was reported in their stability analysis. The low value of Re may 
again be responsible for this (no negative vorticity being visible in the inner boundaries 
of the primary Kelvin-Helmholtz vortex whose stability is investigated). 

Maslowe (1972) has calculated the structure of the critical layer in a stratified shear 
flow for finite-amplitude neutral waves at high Reynolds number. The stationary 
Boussinesq equations are solved analytically (using the method of matched asymptotic 
expansions) in a frame of reference attached to the phase speed of the neutral wave. 
The solution found by Maslowe inside the largest closed streamline has a cat’s eye 
structure, is inviscid and has a uniform density. Because buoyancy is present however, 
thin viscous and thermal layers need to be introduced at the boundaries of the cat’s eye 
to remove discontinuities in velocity and temperature. Maslowe showed that the 
velocity field in these ‘diffusive layers’ is a shear and that the density profile there has 
an identical shape. Moreover, the Richardson number is much smaller than t in the 
layers, even when this parameter exceeds this critical value everywhere in the remainder 
of the flow. A secondary instability is then expected to develop in these diffusive layers. 

The structure of Maslowe’s solution has striking similarities with our numerical 
results (e.g. figure 3 d )  and is located where the near-core instability amplifies in our 
calculations. However, Maslowe’s theoretical study exhibits two important differences 
with our numerical two-dimensional calculations. First the analysis is stationary and, 
secondly, the density inside the cat’s eye is uniform. This contradicts the interpretation 
for the origin of the near-core instability that we have proposed, which results from 
intense convective activity in the vortex core. (It should be noticed that, according to 
Haberman 1973 or Troitskaya 1991, Maslowe’s calculations involve a simplification 
which may influence the critical layer dynamics; see also Maslowe 1986.) 

4.6.2. Comparison with a three-dimensional numerical simulation of a strongly 
stratged shear layer. 

The simulations of one Kelvin-Helmholtz vortex analysed in $ 3  involve a calculation 
at low Reynolds number, equal to 140 (run 2 in table 1). A three-dimensional flow 
having the same values of J and Re  is described in Staquet (1991). A large-scale three- 
dimensional perturbation is superimposed at t = 0 upon the flow used to initialize the 
Re = 140 two-dimensional calculation. (Note that large-scale three-dimensional 
perturbations are observed to grow in the laboratory experiments of unforced stably 
stratified shear layers performed by Yoshida, Caulfield & Peltier 1994, which gives 
substance to our choice of the three-dimensional perturbation.) The purpose of the 
present section is to compare the evolution of the two- and three-dimensional flows. 

The three-dimensional flow behaves totally differently than its two-dimensional 
counterpart : a secondary Kelvin-Helmholtz instability develops in a baroclinic layer 
of the flow, at t z 65, at a location where the spanwise vorticity reaches an absolute 
maximum (equal to 2.25). This maximum value is almost twice as big as for the two- 
dimensional flow (see figure 7a) :  both the baroclinic torque and vortex stretching are 
responsible for production of positive spanwise vorticity in the three-dimensional flow. 
Also, the thickness of the baroclinic layer appears to be half that in the two- 
dimensional situation. As a consequence, the local Richardson number of the 
baroclinic layer reaches a value as small as 0.03 when the secondary instability 
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develops. This parameter becomes the only one that needs to be considered in this 
three-dimensional situation, since no two-dimensional pure strain field acts any longer 
upon the layer. As in two-dimensions, a well identified secondary Kelvin-Helmholtz 
vortex is able to grow. It should be pointed out that, in this low-Reynolds-number 
three-dimensional flow forced at the largest spanwise wavelength, no other clearly 
identified instability was detected. 

5. Summary and conclusions 
The purpose of the present study is to investigate numerically the occurrence of two- 

dimensional secondary instabilities in a baroclinic layer of a strongly stratified shear 
layer. To our knowledge, the occurrence of such instabilities has only been reported in 
geophysical flows (Gossard et al. 1970; Haury et al. 1979), in a few laboratory 
experiments (Delisi 1973 and personal communication 1994; Altman 1988; Atsa- 
vapranee 1995) and in one three-dimensional numerical simulation (Staquet 199 1). A 
baroclinic layer is a thin inclined vorticity layer, whose vorticity is produced by the 
streamwise gradient of the local density field. The baroclinic layer forms in between the 
primary Kelvin-Helmholtz vortices at the location where the ‘braid’ develops in an 
unstratified shear layer. The formation of baroclinic layers is a fundamental aspect of 
the flow, as a manifestation of the property that the vorticity is no longer a Lagrangian 
invariant of the flow (in the inviscid case), as it would be if the density were uniform. 
This gives the stably stratified shear layer a totally different behaviour than its 
unstratified counterpart, with local increase of the vorticity beyond its maximum initial 
value and transfer of energy towards small scales, as in three-dimensional turbulence. 
This study is two-dimensional, with minimum Richardson number equal to 0.167 for 
all calculations. 

The influence of the initial Reynolds number upon the dynamics and the structure 
of the baroclinic layer in the neighbourhood of its stagnation point is examined first 
in the light of the theoretical model proposed by Corcos & Sherman (1976). One of the 
predictions of the model is the existence of an equilibrium state for the baroclinic layer. 
Detailed comparison with the structure of the layer when this equilibrium state is 
reached are made, and remarkable agreement with the predictions of the model are 
found. 

Almost up to the time when this equilibrium is reached, the baroclinic layer remains 
stable. Still, the Richardson number at its stagnation point (where this parameter 
becomes smallest) may become as low as 0.046. For such a value, linear stability 
analysis of a horizontal shear layer subjected to a parallel velocity field predicts 
instability. We argue that the outer strain field acting upon the baroclinic layer about 
its stagnation point is at the origin of this persistent stability, in contributing an 
additional stabilizing mechanism, besides the stable stratification. To quantify this 
additional stabilizing effect, we compute the strain rate y relative to the vorticity 52, at 
the stagnation point of the baroclinic layer. We find that even a ratio y/Q,  as small as 
0.027 is enough to prevent the growth of the instability. This is consistent with the 
findings of Dritschel et al. (1991), for the case of an unstratified strip of uniform 
vorticity in an inviscid fluid subjected to a pure constant strain field. The ratio found 
here is even smaller, the weak but non-zero value of the Richardson number of the 
layer (= 0.046) being very likely at the origin of this difference. 

Two different secondary instabilities are eventually found to develop upon the 
baroclinic layer. For Re 2 1500, a first instability appears just before the equilibrium 
state mentioned above has been reached. This instability does not develop at the 
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stagnation point of the layer and is not of the Kelvin-Helmholtz type. It grows near 
the statically unstable region of the primary Kelvin-Helmholtz vortex. One necessary 
condition for this instability to grow seems to be the formation of a strong jet made 
by the baroclinic layer and an adjacent vorticity layer of opposite sign, created 
baroclinically by convective motions inside the primary Kelvin-Helmholtz vortex. It is 
this jet flow which would become unstable. This secondary ‘ near-core’ instability, as 
we refer to it, amplifies while moving along the baroclinic layer towards the stagnation 
point region. Consequently, it perturbs the whole flow field and induces a turbulent 
behaviour. To our knowledge, this secondary instability has never been reported 
previously. 

Another secondary instability, now of the Kelvin-Helmholtz type, is found to 
develop at the stagnation point of the baroclinic layer. According to the arguments 
given above, the outer strain field acting upon the layer there needs to be suppressed, 
or weakened enough, for this instability to be able to grow. When only one primary 
Kelvin-Helmholtz vortex develops in the flow (i.e. pairing is prohibited), this 
instability is found to occur for Re 3 2000. Indeed, in moving toward the stagnation 
point region, the near-core instability does destroy the outer strain field, but, in doing 
so, also confines the layer to a complex flow. We argue that only when the perturbation 
induced by the near-core instability is strong enough can the secondary Kelvin- 
Helmholtz instability develop; this occurs for Re > 2000. 

By contrast, when a subharmonic perturbation is added at t = 0, this secondary 
Kelvin-Helmholtz instability is found to grow for Re 3 400, while pairing is occurring. 
Because this latter event occurs late in time, the stagnation point region of the layer has 
already been invaded by the rotational part of the flow at that time. But pairing both 
reduces the confinement of the layer and increases its length, so that an instability now 
can eventually grow upon the layer, even if rather thick. An interesting situation is 
encountered when the flow is forced for pairing at high initial Reynolds number 
(Re = 2000). In this case, pairing occurs much faster than in any other calculations. 
This permits the growth of the secondary instability upon a baroclinic layer still 
subjected to the strain field: indeed, in moving away from the stagnation point, the 
primary vortices induce a weaker strain field there, so that a secondary instability is 
able to develop before rotational flow has been advected by the local shear in this 
region of the layer. From this calculation, an empirical threshold value for y/OS below 
which the instability may develop is inferred. A threshold value as small as 0.0185 is 
obtained, with a local Richardson number equal to 0.04. The smallness of the former 
value is consistent with the theoretical findings of Dritschel et al. (1991). Hence, though 
this study is performed at a high value of J ,  it may help to understand why previous 
two-dimensional numerical studies of moderately stably stratified shear layers did not 
report the occurrence of any secondary instability: it is very likely that the initial 
Reynolds number was too low. 

In the Re = 2000 pairing situation described above, vorticity is continuously 
regenerated baroclinically in the stretched baroclinic layer and we show that secondary 
Kelvin-Helmholtz instabilities successively occur there, at smaller and smaller scales. 
This suggests a mechanism of transfer of energy towards dissipative scales, through a 
‘cascade’ of self-similar Kelvin-Helmholtz instabilities. Such a mechanism could 
contribute to mixing at small scales in geophysical flows, in agreement with Woods’ 
(1 969) conjectures. These successive secondary instabilities next destabilize the whole 
flow, as the newly formed secondary vortices are entrained by the local shear. The flow 
soon displays turbulent behaviour. At this stage, a statistical description would be 
required to gain a global and quantitative insight into the flow dynamics. 
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As noted above, the non-conservation of the vorticity following a fluid particle 
suggests that the flow may possess properties analogous to three-dimensional 
turbulence. We have found that the dissipation.rate of the total energy exhibits a 
maximum value which does not depend upon Re when the flow has become turbulent 
through secondary instabilities (this is the case for Re 2 1500). It follows that the 
dissipation rate of the total energy would be controlled by inertial effects in the limit 
of zero viscosity. This behaviour is analogous to that found numerically by Brachet 
(1 990) in three-dimensional homogeneous isotropic turbulence. 

This work raises many questions. For instance, how would the two-dimensional 
secondary instabilities revealed by our calculations behave and possibly compete with 
intrinsically three-dimensional instabilities? Schowalter et al. (1 994) have clearly 
demonstrated experimentally the formation of a convective instability in the vortex 
core, which would be located close to the place where the secondary near-core 
instability develops. At a high stratification level, Klaassen & Peltier (1991) predicted 
that a ‘dynamical’ instability may develop in the neighbourhood of the Kelvin- 
Helmholtz vortex, more or less at the location where the near-core instability grows. 
(This prediction was obtained by studying the stability to three-dimensional perturba- 
tions of a shear layer with one Kelvin-Helmholtz vortex.) Moreover, both inertial 
and convective effects would be at the origin of this dynamical instability, just as for 
the near-core instability. The intrinsically three-dimensional character of the former 
instability, however, prohibits any further link with the latter. How our near-core 
instability would interact with these three-dimensional convective and dynamical 
instabilities, in a fully three-dimensional calculation, is an open question. 

Also, how important is mixing induced by the occurrence of the near-core and 
Kelvin-Helmholtz secondary instabilities? How do vertical diffusion coefficients 
compare with estimates stemming from experimental or in situ measurements? This is 
a crucial question in oceanography (see e.g. Garrett 1993), which would need to be 
examined. 

This work also raises more fundamental questions. First, the stability of a baroclinic 
layer subjected to an outer strain field should be addressed. It would allow an estimate 
of the validity of the approach used here to account for the stability of the baroclinic 
layer in the neighbourhood of the stagnation point, and derive precise threshold values 
for y/Q, and the Richardson number of the layer below which instability occurs. 

Also, our two-dimensional numerical simulations have suggested the existence of a 
cascade of secondary Kelvin-Helmholtz instabilities towards dissipative scales. What 
would this cascade lead to in the absence of viscosity? The limit flow behaviour, if 
found, would be of great interest if one remembers the analogy already used by e.g. 
Pumir & Siggia (1 992) between the inviscid two-dimensional Boussinesq equations and 
the three-dimensional Euler equations with swirl. 

This work benefitted from discussions with L. Armi, D. Dritschel, S. Maslowe, A. 
Pumir and J. J. Riley. Valuable comments were provided by J. Sommeria on a 
preliminary draft of this work. Computations have been performed on the Cray 2 of 
CCVR (Centre de Calcul Vectoriel pour la Recherche) and on the Cray C98 of CNRS. 
Part of the computation time has been allocated by the Scientific Committee of CCVR. 
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